Levelset Segmentation No description has been provided for this image

In [1]:
%matplotlib inline
import matplotlib.pyplot as plt
import SimpleITK as sitk
from myshow import myshow, myshow3d

# Download data to work on
%run update_path_to_download_script
from downloaddata import fetch_data as fdata
In [2]:
img_T1 = sitk.ReadImage(fdata("nac-hncma-atlas2013-Slicer4Version/Data/A1_grayT1.nrrd"))
img_T2 = sitk.ReadImage(fdata("nac-hncma-atlas2013-Slicer4Version/Data/A1_grayT2.nrrd"))
img_T1_255 = sitk.Cast(sitk.RescaleIntensity(img_T1), sitk.sitkUInt8)
img_T1_255 = sitk.Cast(sitk.RescaleIntensity(img_T1), sitk.sitkUInt8)
Fetching nac-hncma-atlas2013-Slicer4Version/Data/A1_grayT1.nrrd
Fetching nac-hncma-atlas2013-Slicer4Version/Data/A1_grayT2.nrrd
In [3]:
sitk.Show(img_T1, title="T1")
In [4]:
idx = (106, 116, 141)
pt = img_T1.TransformIndexToPhysicalPoint(idx)
In [5]:
seg = sitk.Image(img_T1.GetSize(), sitk.sitkUInt8)
seg.CopyInformation(img_T1)
seg[idx] = 1
seg = sitk.BinaryDilate(seg, [3] * 3)
myshow3d(
    sitk.LabelOverlay(img_T1_255, seg),
    zslices=range(idx[2] - 3, idx[2] + 4, 3),
    dpi=30,
    title="Initial Seed",
)
No description has been provided for this image
In [6]:
stats = sitk.LabelStatisticsImageFilter()
stats.Execute(img_T1, seg)
print(stats)
itk::simple::LabelStatisticsImageFilter
  UseHistograms: 1
  Labels: [ 1, 0 ]
  Debug: 0
  NumberOfThreads: 16
  NumberOfWorkUnits: 0
  Commands: (none)
  ProgressMeasurement: 0
  ActiveProcess:
    LabelStatisticsImageFilter (0x7f9b48a2a640)
      RTTI typeinfo:   itk::LabelStatisticsImageFilter<itk::Image<float, 3u>, itk::Image<unsigned char, 3u> >
      Reference Count: 1
      Modified Time: 4810
      Debug: Off
      Object Name: 
      Observers: 
        DeleteEvent(FunctionCommand)
      Inputs: 
        LabelInput: (0x7f9be98fa0e0) *
        Primary: (0x7f9b48861ce0) *
      Indexed Inputs: 
        0: Primary (0x7f9b48861ce0)
      Required Input Names: LabelInput, Primary
      NumberOfRequiredInputs: 1
      Outputs: 
        Primary: (0x0)
      Indexed Outputs: 
        0: Primary (0x0)
      NumberOfRequiredOutputs: 0
      Number Of Work Units: 64
      ReleaseDataFlag: Off
      ReleaseDataBeforeUpdateFlag: On
      AbortGenerateData: Off
      Progress: 1
      Multithreader: 
        RTTI typeinfo:   itk::PoolMultiThreader
        Reference Count: 1
        Modified Time: 4801
        Debug: Off
        Object Name: 
        Observers: 
          none
        Number of Work Units: 64
        Number of Threads: 16
        Global Maximum Number Of Threads: 128
        Global Default Number Of Threads: 16
        Global Default Threader Type: itk::MultiThreaderBaseEnums::Threader::Pool
        SingleMethod: 0
        SingleData: 0x0
      Current Request Number: -1
      NumberOfStreamDivisions: 1
      RegionSplitter: ImageRegionSplitterSlowDimension (0x6000019aef00)
  RTTI typeinfo:   itk::ImageRegionSplitterSlowDimension
  Reference Count: 2
  Modified Time: 4803
  Debug: Off
  Object Name: 
  Observers: 
    none

      CoordinateTolerance: 1e-06
      DirectionTolerance: 1e-06
      LabelStatistics: 
        {: Count: 179
Minimum: 323.044
Maximum: 561.325
Mean: 476.567
Sum: 85305.5
SumOfSquares: 4.14695e+07
Sigma: 67.6929
Variance: 4582.33
BoundingBox: (103, 109, 113, 119, 138, 144)
Histogram: Histogram (0x7f9b4fc04390)
  RTTI typeinfo:   itk::Statistics::Histogram<double, itk::Statistics::DenseFrequencyContainer2>
  Reference Count: 1
  Modified Time: 5012
  Debug: Off
  Object Name: 
  Observers: 
    none
  Source: (none)
  Source output name: (none)
  Release Data: Off
  Data Released: False
  Global Release Data: Off
  PipelineMTime: 0
  UpdateMTime: 0
  RealTimeStamp: 0 seconds 
  Length of measurement vectors in the sample: 1
  Size: [256]
  OffsetTable: 
    [0]: 1
    [1]: 256
  FrequencyContainer: 
    DenseFrequencyContainer2 (0x600002fa4140)
      RTTI typeinfo:   itk::Statistics::DenseFrequencyContainer2
      Reference Count: 1
      Modified Time: 5010
      Debug: Off
      Object Name: 
      Observers: 
        none
  NumberOfInstances: 256
  Min: 
    [0]: -135.632
    [1]: -126.774
    [2]: -117.917
    [3]: -109.059
    [4]: -100.202
    [5]: -91.3446
    [6]: -82.4872
    [7]: -73.6297
    [8]: -64.7723
    [9]: -55.9149
    [10]: -47.0575
    [11]: -38.2001
    [12]: -29.3427
    [13]: -20.4853
    [14]: -11.6279
    [15]: -2.77046
    [16]: 6.08694
    [17]: 14.9444
    [18]: 23.8018
    [19]: 32.6592
    [20]: 41.5166
    [21]: 50.374
    [22]: 59.2314
    [23]: 68.0888
    [24]: 76.9462
    [25]: 85.8036
    [26]: 94.661
    [27]: 103.518
    [28]: 112.376
    [29]: 121.233
    [30]: 130.091
    [31]: 138.948
    [32]: 147.806
    [33]: 156.663
    [34]: 165.52
    [35]: 174.378
    [36]: 183.235
    [37]: 192.093
    [38]: 200.95
    [39]: 209.807
    [40]: 218.665
    [41]: 227.522
    [42]: 236.38
    [43]: 245.237
    [44]: 254.094
    [45]: 262.952
    [46]: 271.809
    [47]: 280.667
    [48]: 289.524
    [49]: 298.382
    [50]: 307.239
    [51]: 316.096
    [52]: 324.954
    [53]: 333.811
    [54]: 342.669
    [55]: 351.526
    [56]: 360.383
    [57]: 369.241
    [58]: 378.098
    [59]: 386.956
    [60]: 395.813
    [61]: 404.67
    [62]: 413.528
    [63]: 422.385
    [64]: 431.243
    [65]: 440.1
    [66]: 448.957
    [67]: 457.815
    [68]: 466.672
    [69]: 475.53
    [70]: 484.387
    [71]: 493.245
    [72]: 502.102
    [73]: 510.959
    [74]: 519.817
    [75]: 528.674
    [76]: 537.532
    [77]: 546.389
    [78]: 555.246
    [79]: 564.104
    [80]: 572.961
    [81]: 581.819
    [82]: 590.676
    [83]: 599.533
    [84]: 608.391
    [85]: 617.248
    [86]: 626.106
    [87]: 634.963
    [88]: 643.821
    [89]: 652.678
    [90]: 661.535
    [91]: 670.393
    [92]: 679.25
    [93]: 688.108
    [94]: 696.965
    [95]: 705.822
    [96]: 714.68
    [97]: 723.537
    [98]: 732.395
    [99]: 741.252
    [100]: 750.109
    [101]: 758.967
    [102]: 767.824
    [103]: 776.682
    [104]: 785.539
    [105]: 794.396
    [106]: 803.254
    [107]: 812.111
    [108]: 820.969
    [109]: 829.826
    [110]: 838.684
    [111]: 847.541
    [112]: 856.398
    [113]: 865.256
    [114]: 874.113
    [115]: 882.971
    [116]: 891.828
    [117]: 900.685
    [118]: 909.543
    [119]: 918.4
    [120]: 927.258
    [121]: 936.115
    [122]: 944.973
    [123]: 953.83
    [124]: 962.687
    [125]: 971.545
    [126]: 980.402
    [127]: 989.259
    [128]: 998.117
    [129]: 1006.97
    [130]: 1015.83
    [131]: 1024.69
    [132]: 1033.55
    [133]: 1042.4
    [134]: 1051.26
    [135]: 1060.12
    [136]: 1068.98
    [137]: 1077.83
    [138]: 1086.69
    [139]: 1095.55
    [140]: 1104.41
    [141]: 1113.26
    [142]: 1122.12
    [143]: 1130.98
    [144]: 1139.84
    [145]: 1148.69
    [146]: 1157.55
    [147]: 1166.41
    [148]: 1175.27
    [149]: 1184.12
    [150]: 1192.98
    [151]: 1201.84
    [152]: 1210.69
    [153]: 1219.55
    [154]: 1228.41
    [155]: 1237.27
    [156]: 1246.12
    [157]: 1254.98
    [158]: 1263.84
    [159]: 1272.7
    [160]: 1281.55
    [161]: 1290.41
    [162]: 1299.27
    [163]: 1308.13
    [164]: 1316.98
    [165]: 1325.84
    [166]: 1334.7
    [167]: 1343.56
    [168]: 1352.41
    [169]: 1361.27
    [170]: 1370.13
    [171]: 1378.99
    [172]: 1387.84
    [173]: 1396.7
    [174]: 1405.56
    [175]: 1414.42
    [176]: 1423.27
    [177]: 1432.13
    [178]: 1440.99
    [179]: 1449.84
    [180]: 1458.7
    [181]: 1467.56
    [182]: 1476.42
    [183]: 1485.27
    [184]: 1494.13
    [185]: 1502.99
    [186]: 1511.85
    [187]: 1520.7
    [188]: 1529.56
    [189]: 1538.42
    [190]: 1547.28
    [191]: 1556.13
    [192]: 1564.99
    [193]: 1573.85
    [194]: 1582.71
    [195]: 1591.56
    [196]: 1600.42
    [197]: 1609.28
    [198]: 1618.14
    [199]: 1626.99
    [200]: 1635.85
    [201]: 1644.71
    [202]: 1653.57
    [203]: 1662.42
    [204]: 1671.28
    [205]: 1680.14
    [206]: 1688.99
    [207]: 1697.85
    [208]: 1706.71
    [209]: 1715.57
    [210]: 1724.42
    [211]: 1733.28
    [212]: 1742.14
    [213]: 1751
    [214]: 1759.85
    [215]: 1768.71
    [216]: 1777.57
    [217]: 1786.43
    [218]: 1795.28
    [219]: 1804.14
    [220]: 1813
    [221]: 1821.86
    [222]: 1830.71
    [223]: 1839.57
    [224]: 1848.43
    [225]: 1857.29
    [226]: 1866.14
    [227]: 1875
    [228]: 1883.86
    [229]: 1892.72
    [230]: 1901.57
    [231]: 1910.43
    [232]: 1919.29
    [233]: 1928.14
    [234]: 1937
    [235]: 1945.86
    [236]: 1954.72
    [237]: 1963.57
    [238]: 1972.43
    [239]: 1981.29
    [240]: 1990.15
    [241]: 1999
    [242]: 2007.86
    [243]: 2016.72
    [244]: 2025.58
    [245]: 2034.43
    [246]: 2043.29
    [247]: 2052.15
    [248]: 2061.01
    [249]: 2069.86
    [250]: 2078.72
    [251]: 2087.58
    [252]: 2096.44
    [253]: 2105.29
    [254]: 2114.15
    [255]: 2123.01
  Max: 
    [0]: -126.774
    [1]: -117.917
    [2]: -109.059
    [3]: -100.202
    [4]: -91.3446
    [5]: -82.4872
    [6]: -73.6297
    [7]: -64.7723
    [8]: -55.9149
    [9]: -47.0575
    [10]: -38.2001
    [11]: -29.3427
    [12]: -20.4853
    [13]: -11.6279
    [14]: -2.77046
    [15]: 6.08694
    [16]: 14.9444
    [17]: 23.8018
    [18]: 32.6592
    [19]: 41.5166
    [20]: 50.374
    [21]: 59.2314
    [22]: 68.0888
    [23]: 76.9462
    [24]: 85.8036
    [25]: 94.661
    [26]: 103.518
    [27]: 112.376
    [28]: 121.233
    [29]: 130.091
    [30]: 138.948
    [31]: 147.806
    [32]: 156.663
    [33]: 165.52
    [34]: 174.378
    [35]: 183.235
    [36]: 192.093
    [37]: 200.95
    [38]: 209.807
    [39]: 218.665
    [40]: 227.522
    [41]: 236.38
    [42]: 245.237
    [43]: 254.094
    [44]: 262.952
    [45]: 271.809
    [46]: 280.667
    [47]: 289.524
    [48]: 298.382
    [49]: 307.239
    [50]: 316.096
    [51]: 324.954
    [52]: 333.811
    [53]: 342.669
    [54]: 351.526
    [55]: 360.383
    [56]: 369.241
    [57]: 378.098
    [58]: 386.956
    [59]: 395.813
    [60]: 404.67
    [61]: 413.528
    [62]: 422.385
    [63]: 431.243
    [64]: 440.1
    [65]: 448.957
    [66]: 457.815
    [67]: 466.672
    [68]: 475.53
    [69]: 484.387
    [70]: 493.245
    [71]: 502.102
    [72]: 510.959
    [73]: 519.817
    [74]: 528.674
    [75]: 537.532
    [76]: 546.389
    [77]: 555.246
    [78]: 564.104
    [79]: 572.961
    [80]: 581.819
    [81]: 590.676
    [82]: 599.533
    [83]: 608.391
    [84]: 617.248
    [85]: 626.106
    [86]: 634.963
    [87]: 643.821
    [88]: 652.678
    [89]: 661.535
    [90]: 670.393
    [91]: 679.25
    [92]: 688.108
    [93]: 696.965
    [94]: 705.822
    [95]: 714.68
    [96]: 723.537
    [97]: 732.395
    [98]: 741.252
    [99]: 750.109
    [100]: 758.967
    [101]: 767.824
    [102]: 776.682
    [103]: 785.539
    [104]: 794.396
    [105]: 803.254
    [106]: 812.111
    [107]: 820.969
    [108]: 829.826
    [109]: 838.684
    [110]: 847.541
    [111]: 856.398
    [112]: 865.256
    [113]: 874.113
    [114]: 882.971
    [115]: 891.828
    [116]: 900.685
    [117]: 909.543
    [118]: 918.4
    [119]: 927.258
    [120]: 936.115
    [121]: 944.973
    [122]: 953.83
    [123]: 962.687
    [124]: 971.545
    [125]: 980.402
    [126]: 989.259
    [127]: 998.117
    [128]: 1006.97
    [129]: 1015.83
    [130]: 1024.69
    [131]: 1033.55
    [132]: 1042.4
    [133]: 1051.26
    [134]: 1060.12
    [135]: 1068.98
    [136]: 1077.83
    [137]: 1086.69
    [138]: 1095.55
    [139]: 1104.41
    [140]: 1113.26
    [141]: 1122.12
    [142]: 1130.98
    [143]: 1139.84
    [144]: 1148.69
    [145]: 1157.55
    [146]: 1166.41
    [147]: 1175.27
    [148]: 1184.12
    [149]: 1192.98
    [150]: 1201.84
    [151]: 1210.69
    [152]: 1219.55
    [153]: 1228.41
    [154]: 1237.27
    [155]: 1246.12
    [156]: 1254.98
    [157]: 1263.84
    [158]: 1272.7
    [159]: 1281.55
    [160]: 1290.41
    [161]: 1299.27
    [162]: 1308.13
    [163]: 1316.98
    [164]: 1325.84
    [165]: 1334.7
    [166]: 1343.56
    [167]: 1352.41
    [168]: 1361.27
    [169]: 1370.13
    [170]: 1378.99
    [171]: 1387.84
    [172]: 1396.7
    [173]: 1405.56
    [174]: 1414.42
    [175]: 1423.27
    [176]: 1432.13
    [177]: 1440.99
    [178]: 1449.84
    [179]: 1458.7
    [180]: 1467.56
    [181]: 1476.42
    [182]: 1485.27
    [183]: 1494.13
    [184]: 1502.99
    [185]: 1511.85
    [186]: 1520.7
    [187]: 1529.56
    [188]: 1538.42
    [189]: 1547.28
    [190]: 1556.13
    [191]: 1564.99
    [192]: 1573.85
    [193]: 1582.71
    [194]: 1591.56
    [195]: 1600.42
    [196]: 1609.28
    [197]: 1618.14
    [198]: 1626.99
    [199]: 1635.85
    [200]: 1644.71
    [201]: 1653.57
    [202]: 1662.42
    [203]: 1671.28
    [204]: 1680.14
    [205]: 1688.99
    [206]: 1697.85
    [207]: 1706.71
    [208]: 1715.57
    [209]: 1724.42
    [210]: 1733.28
    [211]: 1742.14
    [212]: 1751
    [213]: 1759.85
    [214]: 1768.71
    [215]: 1777.57
    [216]: 1786.43
    [217]: 1795.28
    [218]: 1804.14
    [219]: 1813
    [220]: 1821.86
    [221]: 1830.71
    [222]: 1839.57
    [223]: 1848.43
    [224]: 1857.29
    [225]: 1866.14
    [226]: 1875
    [227]: 1883.86
    [228]: 1892.72
    [229]: 1901.57
    [230]: 1910.43
    [231]: 1919.29
    [232]: 1928.14
    [233]: 1937
    [234]: 1945.86
    [235]: 1954.72
    [236]: 1963.57
    [237]: 1972.43
    [238]: 1981.29
    [239]: 1990.15
    [240]: 1999
    [241]: 2007.86
    [242]: 2016.72
    [243]: 2025.58
    [244]: 2034.43
    [245]: 2043.29
    [246]: 2052.15
    [247]: 2061.01
    [248]: 2069.86
    [249]: 2078.72
    [250]: 2087.58
    [251]: 2096.44
    [252]: 2105.29
    [253]: 2114.15
    [254]: 2123.01
    [255]: 2131.87
  TempMeasurementVector: [0]
  TempIndex: [0]
  ClipBinsAtEnds: On
}
        {: Count: 19169101
Minimum: -135.632
Maximum: 2131.87
Mean: 182.056
Sum: 3.48986e+09
SumOfSquares: 1.54579e+12
Sigma: 217.934
Variance: 47495.3
BoundingBox: (0, 287, 0, 319, 0, 207)
Histogram: Histogram (0x7f9b89104320)
  RTTI typeinfo:   itk::Statistics::Histogram<double, itk::Statistics::DenseFrequencyContainer2>
  Reference Count: 1
  Modified Time: 5064
  Debug: Off
  Object Name: 
  Observers: 
    none
  Source: (none)
  Source output name: (none)
  Release Data: Off
  Data Released: False
  Global Release Data: Off
  PipelineMTime: 0
  UpdateMTime: 0
  RealTimeStamp: 0 seconds 
  Length of measurement vectors in the sample: 1
  Size: [256]
  OffsetTable: 
    [0]: 1
    [1]: 256
  FrequencyContainer: 
    DenseFrequencyContainer2 (0x600002fa8140)
      RTTI typeinfo:   itk::Statistics::DenseFrequencyContainer2
      Reference Count: 1
      Modified Time: 5062
      Debug: Off
      Object Name: 
      Observers: 
        none
  NumberOfInstances: 256
  Min: 
    [0]: -135.632
    [1]: -126.774
    [2]: -117.917
    [3]: -109.059
    [4]: -100.202
    [5]: -91.3446
    [6]: -82.4872
    [7]: -73.6297
    [8]: -64.7723
    [9]: -55.9149
    [10]: -47.0575
    [11]: -38.2001
    [12]: -29.3427
    [13]: -20.4853
    [14]: -11.6279
    [15]: -2.77046
    [16]: 6.08694
    [17]: 14.9444
    [18]: 23.8018
    [19]: 32.6592
    [20]: 41.5166
    [21]: 50.374
    [22]: 59.2314
    [23]: 68.0888
    [24]: 76.9462
    [25]: 85.8036
    [26]: 94.661
    [27]: 103.518
    [28]: 112.376
    [29]: 121.233
    [30]: 130.091
    [31]: 138.948
    [32]: 147.806
    [33]: 156.663
    [34]: 165.52
    [35]: 174.378
    [36]: 183.235
    [37]: 192.093
    [38]: 200.95
    [39]: 209.807
    [40]: 218.665
    [41]: 227.522
    [42]: 236.38
    [43]: 245.237
    [44]: 254.094
    [45]: 262.952
    [46]: 271.809
    [47]: 280.667
    [48]: 289.524
    [49]: 298.382
    [50]: 307.239
    [51]: 316.096
    [52]: 324.954
    [53]: 333.811
    [54]: 342.669
    [55]: 351.526
    [56]: 360.383
    [57]: 369.241
    [58]: 378.098
    [59]: 386.956
    [60]: 395.813
    [61]: 404.67
    [62]: 413.528
    [63]: 422.385
    [64]: 431.243
    [65]: 440.1
    [66]: 448.957
    [67]: 457.815
    [68]: 466.672
    [69]: 475.53
    [70]: 484.387
    [71]: 493.245
    [72]: 502.102
    [73]: 510.959
    [74]: 519.817
    [75]: 528.674
    [76]: 537.532
    [77]: 546.389
    [78]: 555.246
    [79]: 564.104
    [80]: 572.961
    [81]: 581.819
    [82]: 590.676
    [83]: 599.533
    [84]: 608.391
    [85]: 617.248
    [86]: 626.106
    [87]: 634.963
    [88]: 643.821
    [89]: 652.678
    [90]: 661.535
    [91]: 670.393
    [92]: 679.25
    [93]: 688.108
    [94]: 696.965
    [95]: 705.822
    [96]: 714.68
    [97]: 723.537
    [98]: 732.395
    [99]: 741.252
    [100]: 750.109
    [101]: 758.967
    [102]: 767.824
    [103]: 776.682
    [104]: 785.539
    [105]: 794.396
    [106]: 803.254
    [107]: 812.111
    [108]: 820.969
    [109]: 829.826
    [110]: 838.684
    [111]: 847.541
    [112]: 856.398
    [113]: 865.256
    [114]: 874.113
    [115]: 882.971
    [116]: 891.828
    [117]: 900.685
    [118]: 909.543
    [119]: 918.4
    [120]: 927.258
    [121]: 936.115
    [122]: 944.973
    [123]: 953.83
    [124]: 962.687
    [125]: 971.545
    [126]: 980.402
    [127]: 989.259
    [128]: 998.117
    [129]: 1006.97
    [130]: 1015.83
    [131]: 1024.69
    [132]: 1033.55
    [133]: 1042.4
    [134]: 1051.26
    [135]: 1060.12
    [136]: 1068.98
    [137]: 1077.83
    [138]: 1086.69
    [139]: 1095.55
    [140]: 1104.41
    [141]: 1113.26
    [142]: 1122.12
    [143]: 1130.98
    [144]: 1139.84
    [145]: 1148.69
    [146]: 1157.55
    [147]: 1166.41
    [148]: 1175.27
    [149]: 1184.12
    [150]: 1192.98
    [151]: 1201.84
    [152]: 1210.69
    [153]: 1219.55
    [154]: 1228.41
    [155]: 1237.27
    [156]: 1246.12
    [157]: 1254.98
    [158]: 1263.84
    [159]: 1272.7
    [160]: 1281.55
    [161]: 1290.41
    [162]: 1299.27
    [163]: 1308.13
    [164]: 1316.98
    [165]: 1325.84
    [166]: 1334.7
    [167]: 1343.56
    [168]: 1352.41
    [169]: 1361.27
    [170]: 1370.13
    [171]: 1378.99
    [172]: 1387.84
    [173]: 1396.7
    [174]: 1405.56
    [175]: 1414.42
    [176]: 1423.27
    [177]: 1432.13
    [178]: 1440.99
    [179]: 1449.84
    [180]: 1458.7
    [181]: 1467.56
    [182]: 1476.42
    [183]: 1485.27
    [184]: 1494.13
    [185]: 1502.99
    [186]: 1511.85
    [187]: 1520.7
    [188]: 1529.56
    [189]: 1538.42
    [190]: 1547.28
    [191]: 1556.13
    [192]: 1564.99
    [193]: 1573.85
    [194]: 1582.71
    [195]: 1591.56
    [196]: 1600.42
    [197]: 1609.28
    [198]: 1618.14
    [199]: 1626.99
    [200]: 1635.85
    [201]: 1644.71
    [202]: 1653.57
    [203]: 1662.42
    [204]: 1671.28
    [205]: 1680.14
    [206]: 1688.99
    [207]: 1697.85
    [208]: 1706.71
    [209]: 1715.57
    [210]: 1724.42
    [211]: 1733.28
    [212]: 1742.14
    [213]: 1751
    [214]: 1759.85
    [215]: 1768.71
    [216]: 1777.57
    [217]: 1786.43
    [218]: 1795.28
    [219]: 1804.14
    [220]: 1813
    [221]: 1821.86
    [222]: 1830.71
    [223]: 1839.57
    [224]: 1848.43
    [225]: 1857.29
    [226]: 1866.14
    [227]: 1875
    [228]: 1883.86
    [229]: 1892.72
    [230]: 1901.57
    [231]: 1910.43
    [232]: 1919.29
    [233]: 1928.14
    [234]: 1937
    [235]: 1945.86
    [236]: 1954.72
    [237]: 1963.57
    [238]: 1972.43
    [239]: 1981.29
    [240]: 1990.15
    [241]: 1999
    [242]: 2007.86
    [243]: 2016.72
    [244]: 2025.58
    [245]: 2034.43
    [246]: 2043.29
    [247]: 2052.15
    [248]: 2061.01
    [249]: 2069.86
    [250]: 2078.72
    [251]: 2087.58
    [252]: 2096.44
    [253]: 2105.29
    [254]: 2114.15
    [255]: 2123.01
  Max: 
    [0]: -126.774
    [1]: -117.917
    [2]: -109.059
    [3]: -100.202
    [4]: -91.3446
    [5]: -82.4872
    [6]: -73.6297
    [7]: -64.7723
    [8]: -55.9149
    [9]: -47.0575
    [10]: -38.2001
    [11]: -29.3427
    [12]: -20.4853
    [13]: -11.6279
    [14]: -2.77046
    [15]: 6.08694
    [16]: 14.9444
    [17]: 23.8018
    [18]: 32.6592
    [19]: 41.5166
    [20]: 50.374
    [21]: 59.2314
    [22]: 68.0888
    [23]: 76.9462
    [24]: 85.8036
    [25]: 94.661
    [26]: 103.518
    [27]: 112.376
    [28]: 121.233
    [29]: 130.091
    [30]: 138.948
    [31]: 147.806
    [32]: 156.663
    [33]: 165.52
    [34]: 174.378
    [35]: 183.235
    [36]: 192.093
    [37]: 200.95
    [38]: 209.807
    [39]: 218.665
    [40]: 227.522
    [41]: 236.38
    [42]: 245.237
    [43]: 254.094
    [44]: 262.952
    [45]: 271.809
    [46]: 280.667
    [47]: 289.524
    [48]: 298.382
    [49]: 307.239
    [50]: 316.096
    [51]: 324.954
    [52]: 333.811
    [53]: 342.669
    [54]: 351.526
    [55]: 360.383
    [56]: 369.241
    [57]: 378.098
    [58]: 386.956
    [59]: 395.813
    [60]: 404.67
    [61]: 413.528
    [62]: 422.385
    [63]: 431.243
    [64]: 440.1
    [65]: 448.957
    [66]: 457.815
    [67]: 466.672
    [68]: 475.53
    [69]: 484.387
    [70]: 493.245
    [71]: 502.102
    [72]: 510.959
    [73]: 519.817
    [74]: 528.674
    [75]: 537.532
    [76]: 546.389
    [77]: 555.246
    [78]: 564.104
    [79]: 572.961
    [80]: 581.819
    [81]: 590.676
    [82]: 599.533
    [83]: 608.391
    [84]: 617.248
    [85]: 626.106
    [86]: 634.963
    [87]: 643.821
    [88]: 652.678
    [89]: 661.535
    [90]: 670.393
    [91]: 679.25
    [92]: 688.108
    [93]: 696.965
    [94]: 705.822
    [95]: 714.68
    [96]: 723.537
    [97]: 732.395
    [98]: 741.252
    [99]: 750.109
    [100]: 758.967
    [101]: 767.824
    [102]: 776.682
    [103]: 785.539
    [104]: 794.396
    [105]: 803.254
    [106]: 812.111
    [107]: 820.969
    [108]: 829.826
    [109]: 838.684
    [110]: 847.541
    [111]: 856.398
    [112]: 865.256
    [113]: 874.113
    [114]: 882.971
    [115]: 891.828
    [116]: 900.685
    [117]: 909.543
    [118]: 918.4
    [119]: 927.258
    [120]: 936.115
    [121]: 944.973
    [122]: 953.83
    [123]: 962.687
    [124]: 971.545
    [125]: 980.402
    [126]: 989.259
    [127]: 998.117
    [128]: 1006.97
    [129]: 1015.83
    [130]: 1024.69
    [131]: 1033.55
    [132]: 1042.4
    [133]: 1051.26
    [134]: 1060.12
    [135]: 1068.98
    [136]: 1077.83
    [137]: 1086.69
    [138]: 1095.55
    [139]: 1104.41
    [140]: 1113.26
    [141]: 1122.12
    [142]: 1130.98
    [143]: 1139.84
    [144]: 1148.69
    [145]: 1157.55
    [146]: 1166.41
    [147]: 1175.27
    [148]: 1184.12
    [149]: 1192.98
    [150]: 1201.84
    [151]: 1210.69
    [152]: 1219.55
    [153]: 1228.41
    [154]: 1237.27
    [155]: 1246.12
    [156]: 1254.98
    [157]: 1263.84
    [158]: 1272.7
    [159]: 1281.55
    [160]: 1290.41
    [161]: 1299.27
    [162]: 1308.13
    [163]: 1316.98
    [164]: 1325.84
    [165]: 1334.7
    [166]: 1343.56
    [167]: 1352.41
    [168]: 1361.27
    [169]: 1370.13
    [170]: 1378.99
    [171]: 1387.84
    [172]: 1396.7
    [173]: 1405.56
    [174]: 1414.42
    [175]: 1423.27
    [176]: 1432.13
    [177]: 1440.99
    [178]: 1449.84
    [179]: 1458.7
    [180]: 1467.56
    [181]: 1476.42
    [182]: 1485.27
    [183]: 1494.13
    [184]: 1502.99
    [185]: 1511.85
    [186]: 1520.7
    [187]: 1529.56
    [188]: 1538.42
    [189]: 1547.28
    [190]: 1556.13
    [191]: 1564.99
    [192]: 1573.85
    [193]: 1582.71
    [194]: 1591.56
    [195]: 1600.42
    [196]: 1609.28
    [197]: 1618.14
    [198]: 1626.99
    [199]: 1635.85
    [200]: 1644.71
    [201]: 1653.57
    [202]: 1662.42
    [203]: 1671.28
    [204]: 1680.14
    [205]: 1688.99
    [206]: 1697.85
    [207]: 1706.71
    [208]: 1715.57
    [209]: 1724.42
    [210]: 1733.28
    [211]: 1742.14
    [212]: 1751
    [213]: 1759.85
    [214]: 1768.71
    [215]: 1777.57
    [216]: 1786.43
    [217]: 1795.28
    [218]: 1804.14
    [219]: 1813
    [220]: 1821.86
    [221]: 1830.71
    [222]: 1839.57
    [223]: 1848.43
    [224]: 1857.29
    [225]: 1866.14
    [226]: 1875
    [227]: 1883.86
    [228]: 1892.72
    [229]: 1901.57
    [230]: 1910.43
    [231]: 1919.29
    [232]: 1928.14
    [233]: 1937
    [234]: 1945.86
    [235]: 1954.72
    [236]: 1963.57
    [237]: 1972.43
    [238]: 1981.29
    [239]: 1990.15
    [240]: 1999
    [241]: 2007.86
    [242]: 2016.72
    [243]: 2025.58
    [244]: 2034.43
    [245]: 2043.29
    [246]: 2052.15
    [247]: 2061.01
    [248]: 2069.86
    [249]: 2078.72
    [250]: 2087.58
    [251]: 2096.44
    [252]: 2105.29
    [253]: 2114.15
    [254]: 2123.01
    [255]: 2131.87
  TempMeasurementVector: [0]
  TempIndex: [0]
  ClipBinsAtEnds: On
}
      ValidLabelValues: (, )
      UseHistograms: On
      NumBins: [256]
      LowerBound: -135.632
      UpperBound: 2131.87

In [7]:
factor = 1.5
lower_threshold = stats.GetMean(1) - factor * stats.GetSigma(1)
upper_threshold = stats.GetMean(1) + factor * stats.GetSigma(1)
In [8]:
init_ls = sitk.SignedMaurerDistanceMap(seg, insideIsPositive=True, useImageSpacing=True)
In [9]:
lsFilter = sitk.ThresholdSegmentationLevelSetImageFilter()
lsFilter.SetLowerThreshold(lower_threshold)
lsFilter.SetUpperThreshold(upper_threshold)
lsFilter.SetMaximumRMSError(0.02)
lsFilter.SetNumberOfIterations(100)
lsFilter.SetCurvatureScaling(1)
lsFilter.SetPropagationScaling(1)
lsFilter.ReverseExpansionDirectionOn()
ls = lsFilter.Execute(init_ls, sitk.Cast(img_T1, sitk.sitkFloat32))
print(lsFilter)
itk::simple::ThresholdSegmentationLevelSetImageFilter
  LowerThreshold: 375.028
  UpperThreshold: 578.107
  MaximumRMSError: 0.02
  PropagationScaling: 1
  CurvatureScaling: 1
  NumberOfIterations: 100
  ReverseExpansionDirection: 1
  ElapsedIterations: 100
  RMSChange: 0.0691501
  Debug: 0
  NumberOfThreads: 16
  NumberOfWorkUnits: 0
  Commands: (none)
  ProgressMeasurement: 1
  ActiveProcess: (none)

In [10]:
zslice_offset = 4
t = "LevelSet after " + str(lsFilter.GetNumberOfIterations()) + " iterations"
myshow3d(
    sitk.LabelOverlay(img_T1_255, ls > 0),
    zslices=range(idx[2] - zslice_offset, idx[2] + zslice_offset + 1, zslice_offset),
    dpi=20,
    title=t,
)
No description has been provided for this image
In [11]:
lsFilter.SetNumberOfIterations(25)
img_T1f = sitk.Cast(img_T1, sitk.sitkFloat32)
ls = init_ls
niter = 0
for i in range(0, 10):
    ls = lsFilter.Execute(ls, img_T1f)
    niter += lsFilter.GetNumberOfIterations()
    t = (
        "LevelSet after "
        + str(niter)
        + " iterations and RMS "
        + str(lsFilter.GetRMSChange())
    )
    fig = myshow3d(
        sitk.LabelOverlay(img_T1_255, ls > 0),
        zslices=range(
            idx[2] - zslice_offset, idx[2] + zslice_offset + 1, zslice_offset
        ),
        dpi=20,
        title=t,
    )
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image
No description has been provided for this image