
An implementation decoupling the storage representation
from the in-memory representation

Luca Marconato on behalf of the SpatialData team: Giovanni Palla, Kevin Yamauchi,
Isaac Virshup, Wouter Vierdag, Tim Treis, Josh Moore, …

July 26, 2024, 3rd “Get Your Brain Together” Hackathon

Relies on existing Python GIS
technologies

OME (Open Microscopy Environment)

napariLarge images, standard formats

scverse core

Napari core

Data analysis

SpatialData is a solution for working with spatial multiomics datasets that bridges existing communities

AnnDataSpatialData

Marconato*, Palla*, Yamauchi*, Virshup* et al.
(Nature Methods, 2024)

Interactive visualization

SpatialData:
● infrastructure for data storage,

manipulation and visualization
● non-goal: not an analysis library

Microscopy
images, …

Segmentation
mask

Raster
geometries

Vector
geometries

Transcripts
locations

Cells, ROIs,
…

Gene expression,
cell types, …

Annotations

Annotates

Data representation is abstracted as a modular combination of reusable elements

Segmentation
mask

Transcripts
locations

Cells, ROIs,
…

Gene expression,
cell types, …

Read/write

In memory:

On disk:

Microscopy
images, …

language
agnostic

Annotates

Data representation is abstracted as a modular combination of reusable elements

Coordinate transformations enable alignment to common coordinate systems

{“name" : “pixel-space",

"axes" : [

{"name": "j", "type": "space",
"discrete": true },

{"name": "i", "type": "space",
"discrete": true }]}

pixel space SpatialData object

{"name" : "pixels-to-micrometers",

 "type" : "affine",

 "values" : [

[0.89, -0.45, 1.00],

[0.45, 0.89, 2.00],

[0.00, 0.00, 1.00]],

 "input_space" : "",

 "output_space":
"physical-micrometers"}

transformation

{"name" : “physical-micrometers",

"axes" : [

{"name": "y", "type": "space", "unit":
“micrometer"},

{"name": "x", "type": "space", "unit":
“micrometer”}]}

physical space

Transformations are defined both for raster and vector types

Example: joint visualization of 2 Xenium + 1 Visium datasets

Cancer clonality (Visium) Anatomical annotations (Visium) Cell types (Xenium)

Transformations are defined both for raster and vector types

Spatial queries

Deep learning interface

9

Generalized, reusable operations are defined for SpatialData objects

Spatial aggregations

Coordinate transformations

Example use case

Wouter-Michiel Vierdag, Quentin Blampey

SpatialData APIs: set_transformation() vs transform()

Notice: axes are not czyx

Notice: axes are not czyx

We can easily create, compose and rearrange transformations

Transformations are defined independently of the axes of the elements they are applied to

Reading/writing to disk is delegated to NGFF transformations

Assumptions to keep things less
verbose for the user:

● the default coordinate system
name is “global” (will change)

● the default unit is “unit”

NGFF requires additional
informations

Works also
for vector
data!

First implementation, mirroring the NGFF specification: coordinate systems

https://github.com/scverse/spatialdata/blob/main/src/spatialdata/transformations/ngff

https://github.com/scverse/spatialdata/blob/main/src/spatialdata/transformations/ngff

First implementation, mirroring the NGFF specification: coordinate transformations

https://github.com/scverse/spatialdata/blob/main/src/spatialdata/transformations/ngff

Possible improvement:
using pydantic (see
work from Davis
Bennet for v0.4:
JaneliaSciComp/pydan
tic-ome-ngff)

https://github.com/scverse/spatialdata/blob/main/src/spatialdata/transformations/ngff
https://github.com/JaneliaSciComp/pydantic-ome-ngff
https://github.com/JaneliaSciComp/pydantic-ome-ngff

Adding functionalities to the NGFF transformation classes

In the new implementation
we have a separate
transform() function

3. Ambiguity around sequence
transformations due to the possibility of
specifying sub-transformations without an
input/output coordinate system link

Drawbacks of staying close to the NGFF implementation

Drawbacks:
1. our APIs were too verbose:

a. the users had to specify (or import)
the axes, units, coordinate systems

b. c vs non-c axes had to be specified
2. transformations could not be moved

around: e.g. from xy points to a cyx image

link to this old code

https://github.com/ome/ngff/pull/138#issuecomment-1307821023
https://github.com/scverse/spatialdata/blob/20f2e3a79bb3417db7c6dadaa5e93b68237f43b4/tests/_core/test_transformations.py#L316

A new approach: different transformation classes in-memory

Simplification:
1. Transformations are defined independently of the input/output coordinate systems they

will be eventually applied to .
E.g. x ⟼ x + 5 reads as “if there is an x, translate it by 5”

Implementation:
1. We don’t use coordinate systems to define transformations
2. Transformations require extra arguments. Examples:

Translation([5.], axes=(‘x’,))
Affine([[1, 2]], input_axes=(‘i’, ‘j’), output_axes=(‘c’))

What didn’t change:
1. Transformations are n-dimensional: any order of axes and any number

Detail: in spatialdata we use only ‘c’, ‘z’, ‘y’, ‘x’; so we actually validate against
these axes during __init__()

2. IO is done via NGFF transformations thanks to conversions:
BaseTransformation ↔ NgffBaseTransformation

Simplifications:
● All transformations can be turned into Affine. This can be relaxed!

Implementation:
● We skipped byDimension and Rotation
● We always know the input axes thanks to our element schemas:

○ 2d images cyx
○ 3d images czy
○ 2d labels yx
○ 3d labels zyx
○ 2d points xy
○ 3d points xyz
○ 2d shapes xy

● We can find the output axes using _get_current_output_axes()

How we actually transform the elements

https://github.com/scverse/spatialdata/blob/a9fb47776701498a5ecca5e3c5e56a02d59d1224/src/spatialdata/transformations/transformations.py#L755

How we deal with missing/extra axes

c is “passed through” (because it is present both as input and output axes but not defined in the transformation)
z is “ignored” (because it is present only in the output axes)

We use transformations to map elements to coordinate systems

● Same for vector elements
● A coordinate system is

just a string
● We store transformations

in the element’s metadata

● We plan to store (optional)
coordinate system
information

the default coordinate system
name is “global” (will change)

The transform() function

Implementation:
● Uses dask_image.ndinterp.affine_transform for raster data.
● Uses geopandas.GeoSeries.affine_transform for vector data.

Examples from the docs (note: here actually we use matplotlib.transforms , but the output is analogous)

Lazy and chunk-wise (but can be optimized)

Need to use dask-geopandas at some point

https://spatialdata.scverse.org/en/latest/tutorials/notebooks/notebooks/examples/transformations.html

Limitations of the in-memory transformations classes:
● So far, for what is implemented, none.
● Need to implement the non-linear transformations.

Limitations of the in-memory classes

transform()

Tobias
Graf

Read/write

Displacement field
(non-linear transformation)

Interface to external
methods:

- STalign
- EGGPLANT
- …

Work in progress!

Limitations of the transform() function

Limitations of their use within spatialdata, and of the transform() function:
● transform() can be optimized (ad hoc algorithms, GPU)
● We allow only ‘c’, ‘z’, ‘y’, ‘x’. No ‘t’(workarounds available).
● We allow only specific orders of axes.
● We don’t treat ‘c’as a spatial axis;

○ e.g. embedding a single-channel image into a multi-channel image is not allowed
○ instead, we just call dask.array.stack()

● No bridge: NGFF transformations ↔ xarray coordinates.

image from xarray docs

xarray
coordinates

Limitations of transformations and the incoming implementation

transform()

Current implementation:

transform()

Better implementation:
≈400

≈0
≈0 ≈400

≈400x400
pixels

0 100

100

0

100x100
pixels

assume k = 4

≈100x100
pixels

≈400+y

≈y
≈x ≈400+x

+

bad performant

ergonomic

Limitations of transformations and the new implementation

● We can’t define the red transformations
● Still, we compute their values from existing transformations

Limitations of transformations and the new implementation

Limitations of transformations and the new implementation

Limitations of transformations and the new implementation

A bridge: NGFF transformations ↔ Xarray coordinates

The scale+translation info represents the:
● “Canonical scale for the data”
● “Canonical orientation for the data”
● “Canonical origin for the data”

Implementation:
● After read() turn scale+translation into xarray

coordinates.
● Before write() turn the xarray coordinates into

scale+translation.
● transform() modifies the data only if necessary E.g.

rotation, but not for scale or translation.

● Bonus: scale+translation can be allowed also for vector
data; this can be used to define the “canonical
orientation”

The new specs maintain the old v0.4 transformations
(scale+translation), used for multi-scale images.

Conclusions and proposal on how to proceed

What we implemented:
● Ergonomic APIs that address our spatial omics use cases:
● On-disk, still NGFF
● Transformations also for points and shapes

● Faster remote read

Proposal, move code out of spatialdata into a more general repository:
● Tier 1: NGFFBaseTransformation (in particular read-write APIs)

○ could add a pydantic model
● Tier 2: BaseTransformation (i.e. ergonomic APIs)
● Tier 3: transform()

○ generalize to arbitrary axes
● Extra:

○ Converters between other formats (ITK, matplotlib, napari, …)

a.Announcing the first scverse conference!

Wolfgang
Huber

Josh Moore (OME, GerBi)
Kevin Yamauchi (ETH)
Yvan Saeys (UGhent)

DKFZ

Ilia Kats
Tobias Graf
Moritz Gerstung
Elyas Heidari

● established interoperable format for
spatial omics based on OME-NGFF

Isaac
Virshup

Josh
Moore

Kevin
Yamauchi

Luca
Marconato

EMBL

Oliver Stegle
Luca Marconato
Sinem Saka
Wouter-Michiel Vierdag
Wolfgang Huber
Harald Vöheringer
Constantin Ahlmann-Eltze
Mike Smith

Nils Eiling (UZH)
Will Moore (OME, UDundee)
Quentin Blampey (UParis Saclay)
Florian Wünnemann (UKHD)
Mark Keller (HMS)
10x Genomics team
CZI cellxgene team
…

spatialdata.scverse.or
g

Funded by

Isaac
Virshup

Josh
Moore

Kevin
Yamauchi

Giovanni
Palla

Lotte Pollaris (UGhent)
Benjamin Rombaut (UGhent)
Christian Tischer (EMBL)
Andreas S. Eisenbarth (EMBL)
Omer Bayraktar (Sanger)
Tong Li (Sanger)
Ilan Gold (Helmholtz)
Helena Crowell (CNAG)

Conclusions and acknowledgements

Giovanni
Palla

Kevin
Yamauchi

Isaac
Virshup

First authors are underlined

Helmholtz Munich

Fabian Theis
Giovanni Palla
Isaac Virshup
Tim Treis
Sonja Stockhaus
Laurens Lehner
Marcella Toth
Rahul Shrestha

● in-memory multimodal representation
● processing, visualization
● scales to large datasets

Wouter-Mich
iel Vierdag

Tim Treis

Marcela
Toth

Rahul B.
Shrestha

Harald
Vöringer

Sonja
Stockhaus

Laurens
Lehner

Quentin
Blampey

Sinem
Saka

Josh
Moore

Nature Methods, 2024

Elyas
Heidari

Luca
Marconato

Moritz
Gerstung

Fabian
Theis

Oliver
Stegle

Benjamin
Rombaut

Lotte
Pollaris

Yvan
Saeys

http://spatialdata.scverse.org
http://spatialdata.scverse.org

