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Relies on existing Python GIS 
technologies

OME (Open Microscopy Environment)

napariLarge images, standard formats

scverse core

Napari core

Data analysis

SpatialData is a solution for working with spatial multiomics datasets that bridges existing communities

AnnDataSpatialData

Marconato*, Palla*, Yamauchi*, Virshup* et al. 
(Nature Methods, 2024)

Interactive visualization

SpatialData: 
● infrastructure for data storage, 

manipulation and visualization
● non-goal: not an analysis library



Microscopy 
images, …

Segmentation 
mask

Raster 
geometries

Vector 
geometries

Transcripts 
locations

Cells, ROIs,
…

Gene expression, 
cell types, …

Annotations

Annotates

Data representation is abstracted as a modular combination of reusable elements
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In memory:
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Data representation is abstracted as a modular combination of reusable elements



Coordinate transformations enable alignment to common coordinate systems

{“name" : “pixel-space",

"axes" : [

{"name": "j", "type": "space", 
"discrete":      true },

{"name": "i", "type": "space", 
"discrete": true }]}

pixel space SpatialData object

{"name" : "pixels-to-micrometers",

  "type" : "affine",

  "values" : [

[0.89, -0.45, 1.00],

[0.45, 0.89, 2.00],

[0.00, 0.00, 1.00]],

  "input_space" : "",

  "output_space": 
"physical-micrometers"}

transformation

{"name" : “physical-micrometers",

"axes" : [

{"name": "y", "type": "space", "unit": 
“micrometer"},

{"name": "x", "type": "space", "unit": 
“micrometer”}]}

physical  space

Transformations are defined both for raster and vector types



Example: joint visualization of 2 Xenium + 1 Visium datasets

Cancer clonality (Visium) Anatomical annotations (Visium) Cell types (Xenium)

Transformations are defined both for raster and vector types



Spatial queries

Deep learning interface

9

Generalized, reusable operations are defined for SpatialData objects

Spatial aggregations

Coordinate transformations



Example use case

Wouter-Michiel Vierdag, Quentin Blampey



SpatialData APIs: set_transformation() vs transform()

Notice: axes are not czyx

Notice: axes are not czyx



We can easily create, compose and rearrange transformations



Transformations are defined independently of the axes of the elements they are applied to



Reading/writing to disk is delegated to NGFF transformations

Assumptions to keep things less 
verbose for the user:

● the default coordinate system 
name is “global” (will change)

● the default unit is “unit”

NGFF requires additional 
informations

Works also 
for vector 
data!



First implementation, mirroring the NGFF specification: coordinate systems

https://github.com/scverse/spatialdata/blob/main/src/spatialdata/transformations/ngff 

https://github.com/scverse/spatialdata/blob/main/src/spatialdata/transformations/ngff


First implementation, mirroring the NGFF specification: coordinate transformations

https://github.com/scverse/spatialdata/blob/main/src/spatialdata/transformations/ngff 

Possible improvement: 
using pydantic (see 
work from Davis 
Bennet for v0.4: 
JaneliaSciComp/pydan
tic-ome-ngff)

 

https://github.com/scverse/spatialdata/blob/main/src/spatialdata/transformations/ngff
https://github.com/JaneliaSciComp/pydantic-ome-ngff
https://github.com/JaneliaSciComp/pydantic-ome-ngff


Adding functionalities to the NGFF transformation classes

In the new implementation 
we have a separate 
transform() function



3. Ambiguity around sequence 
transformations due to the possibility of 
specifying sub-transformations without an 
input/output coordinate system link

Drawbacks of staying close to the NGFF implementation

Drawbacks:
1. our APIs were too verbose:

a. the users had to specify (or import) 
the axes, units, coordinate systems

b. c vs non-c axes had to be specified
2. transformations could not be moved 

around: e.g. from xy points to a cyx image

link to this old code

https://github.com/ome/ngff/pull/138#issuecomment-1307821023
https://github.com/scverse/spatialdata/blob/20f2e3a79bb3417db7c6dadaa5e93b68237f43b4/tests/_core/test_transformations.py#L316


A new approach: different transformation classes in-memory

Simplification:
1. Transformations are defined independently of the input/output coordinate systems they 

will be eventually applied to . 
E.g. x ⟼ x + 5 reads as “if there is an x, translate it by 5”

Implementation:
1. We don’t use coordinate systems to define transformations
2. Transformations require extra arguments. Examples:

Translation([5.], axes=(‘x’,))
Affine([[1, 2]], input_axes=(‘i’, ‘j’), output_axes=(‘c’))

What didn’t change:
1. Transformations are n-dimensional: any order of axes and any number

Detail: in spatialdata we use only ‘c’, ‘z’, ‘y’, ‘x’; so we actually validate against 
these axes during __init__()

2. IO is done via NGFF transformations thanks to conversions: 
BaseTransformation ↔ NgffBaseTransformation



Simplifications:
● All transformations can be turned into Affine. This can be relaxed!

Implementation:
● We skipped byDimension and Rotation
● We always know the input axes thanks to our element schemas:

○ 2d images cyx
○ 3d images czy
○ 2d labels yx 
○ 3d labels zyx
○ 2d points xy 
○ 3d points xyz
○ 2d shapes xy 

● We can find the output axes using _get_current_output_axes()

How we actually transform the elements

https://github.com/scverse/spatialdata/blob/a9fb47776701498a5ecca5e3c5e56a02d59d1224/src/spatialdata/transformations/transformations.py#L755


How we deal with missing/extra axes

c is “passed through” (because it is present both as input and output axes but not defined in the transformation)
z is “ignored” (because it is present only in the output axes)



We use transformations to map elements to coordinate systems

● Same for vector elements
● A coordinate system is 

just a string
● We store transformations 

in the element’s metadata

● We plan to store (optional) 
coordinate system 
information

the default coordinate system 
name is “global” (will change)



The transform() function

Implementation:
● Uses dask_image.ndinterp.affine_transform  for raster data. 
● Uses geopandas.GeoSeries.affine_transform  for vector data.

Examples from the docs (note: here actually we use matplotlib.transforms , but the output is analogous)

Lazy and chunk-wise (but can be optimized)

Need to use dask-geopandas at some point

https://spatialdata.scverse.org/en/latest/tutorials/notebooks/notebooks/examples/transformations.html


Limitations of the in-memory transformations classes:
● So far, for what is implemented, none.
● Need to implement the non-linear transformations.

Limitations of the in-memory classes

transform()

Tobias 
Graf

Read/write

Displacement field 
(non-linear transformation)

Interface to external 
methods:

- STalign
- EGGPLANT
- …

Work in progress!



Limitations of the transform() function

Limitations of their use within spatialdata, and of the transform() function:
● transform() can be optimized (ad hoc algorithms, GPU)
● We allow only ‘c’, ‘z’, ‘y’, ‘x’. No ‘t’(workarounds available).
● We allow only specific orders of axes.
● We don’t treat ‘c’as a spatial axis;

○ e.g. embedding a single-channel image into a multi-channel image is not allowed
○ instead, we just call dask.array.stack()

● No bridge: NGFF transformations ↔ xarray coordinates.

image from xarray docs

xarray 
coordinates



Limitations of transformations and the incoming implementation

transform()

Current implementation:

transform()

Better implementation:
≈400
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≈0 ≈400

≈400x400 
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0

100x100 
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≈100x100 
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+

bad performant

ergonomic



Limitations of transformations and the new implementation



● We can’t define the red transformations
● Still, we compute their values from existing transformations

Limitations of transformations and the new implementation



Limitations of transformations and the new implementation



Limitations of transformations and the new implementation



A bridge: NGFF transformations ↔ Xarray coordinates

The scale+translation info represents the:
● “Canonical scale for the data”
● “Canonical orientation for the data”
● “Canonical origin for the data”

Implementation:
● After read() turn scale+translation into xarray 

coordinates.
● Before write() turn the xarray coordinates into 

scale+translation.
● transform() modifies the data only if necessary E.g. 

rotation, but not for scale or translation.

● Bonus: scale+translation can be allowed also for vector 
data; this can be used to define the “canonical 
orientation”

The new specs maintain the old v0.4 transformations 
(scale+translation), used for multi-scale images.



Conclusions and proposal on how to proceed

What we implemented:
● Ergonomic APIs that address our spatial omics use cases:
● On-disk, still NGFF
● Transformations also for points and shapes

● Faster remote read

Proposal, move code out of spatialdata into a more general repository:
● Tier 1: NGFFBaseTransformation (in particular read-write APIs)

○ could add a pydantic model
● Tier 2: BaseTransformation (i.e. ergonomic APIs)
● Tier 3: transform()

○ generalize to arbitrary axes
● Extra:

○ Converters between other formats (ITK, matplotlib, napari, …)



a.Announcing the first scverse conference!
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