int
main()
{
constexpr unsigned int numberOfClasses = 2;
sample->SetMeasurementVectorSize(1);
normalGenerator->Initialize(101);
MeasurementVectorType mv;
double mean = 100;
double standardDeviation = 30;
for (unsigned int i = 0; i < 100; ++i)
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
sample->PushBack(mv);
}
normalGenerator->Initialize(3024);
mean = 200;
standardDeviation = 30;
for (unsigned int i = 0; i < 100; ++i)
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
sample->PushBack(mv);
}
ParametersType params(2);
std::vector<ParametersType> initialParameters(numberOfClasses);
params[0] = 110.0;
params[1] = 800.0;
initialParameters[0] = params;
params[0] = 210.0;
params[1] = 850.0;
initialParameters[1] = params;
using ComponentType =
std::vector<ComponentType::Pointer> components;
for (unsigned int i = 0; i < numberOfClasses; ++i)
{
(components[i])->SetSample(sample);
(components[i])->SetParameters(initialParameters[i]);
}
using EstimatorType =
estimator->SetSample(sample);
estimator->SetMaximumIteration(200);
initialProportions[0] = 0.5;
initialProportions[1] = 0.5;
estimator->SetInitialProportions(initialProportions);
for (unsigned int i = 0; i < numberOfClasses; ++i)
{
estimator->AddComponent(
}
estimator->Update();
for (unsigned int i = 0; i < numberOfClasses; ++i)
{
std::cout << "Cluster[" << i << "]" << std::endl;
std::cout << " Parameters:" << std::endl;
std::cout << " " << (components[i])->GetFullParameters()
<< std::endl;
std::cout << " Proportion: ";
std::cout << " " << estimator->GetProportions()[i] << std::endl;
}
return EXIT_SUCCESS;
}
This class generates the parameter estimates for a mixture model using expectation maximization strat...
is a component (derived from MixtureModelComponentBase) for Gaussian class. This class is used in Exp...
This class is the native implementation of the a Sample with an STL container.
Normal random variate generator.
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass