ITK  6.0.0
Insight Toolkit
Examples/Statistics/KdTree.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// \index{itk::Statistics::KdTree}
// \index{itk::Statistics::KdTree\-Generator}
// \index{itk::Statistics::Weighted\-Centroid\-KdTree\-Generator}
//
// The \subdoxygen{Statistics}{KdTree} implements a data structure that
// separates samples in a $k$-dimension space. The \code{std::vector} class
// is used here as the container for the measurement vectors from a sample.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkVector.h"
#include "itkMath.h"
#include "itkListSample.h"
// Software Guide : EndCodeSnippet
int
main()
{
// Software Guide : BeginLatex
//
// We define the measurement vector type and instantiate a
// \subdoxygen{Statistics}{ListSample} object, and then put 1000
// measurement vectors in the object.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using MeasurementVectorType = itk::Vector<float, 2>;
auto sample = SampleType::New();
sample->SetMeasurementVectorSize(2);
MeasurementVectorType mv;
for (unsigned int i = 0; i < 1000; ++i)
{
mv[0] = static_cast<float>(i);
mv[1] = static_cast<float>((1000 - i) / 2);
sample->PushBack(mv);
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following code snippet shows how to create two KdTree objects. The
// first object \subdoxygen{Statistics}{KdTreeGenerator} has a minimal set
// of information (partition dimension, partition value, and pointers to
// the left and right child nodes). The second tree from the
// \subdoxygen{Statistics}{WeightedCentroidKdTreeGenerator} has additional
// information such as the number of children under each node, and the
// vector sum of the measurement vectors belonging to children of a
// particular node. WeightedCentroidKdTreeGenerator and the resulting k-d
// tree structure were implemented based on the description given in the
// paper by Kanungo et al \cite{Kanungo2000}.
//
// The instantiation and input variables are exactly the same for both
// tree generators. Using the \code{SetSample()} method we plug-in the
// source sample. The bucket size input specifies the limit on the
// maximum number of measurement vectors that can be stored in a
// terminal (leaf) node. A bigger bucket size results in a smaller number of
// nodes in a tree. It also affects the efficiency of search. With
// many small leaf nodes, we might experience slower search
// performance because of excessive boundary comparisons.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto treeGenerator = TreeGeneratorType::New();
treeGenerator->SetSample(sample);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();
using CentroidTreeGeneratorType =
auto centroidTreeGenerator = CentroidTreeGeneratorType::New();
centroidTreeGenerator->SetSample(sample);
centroidTreeGenerator->SetBucketSize(16);
centroidTreeGenerator->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// After the generation step, we can get the pointer to the kd-tree
// from the generator by calling the \code{GetOutput()} method. To
// traverse a kd-tree, we have to use the \code{GetRoot()} method. The
// method will return the root node of the tree. Every node in a tree
// can have its left and/or right child node. To get the child node,
// we call the \code{Left()} or the \code{Right()} method of a node
// (these methods do not belong to the kd-tree but to the nodes).
//
// We can get other information about a node by calling the methods
// described below in addition to the child node pointers.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using TreeType = TreeGeneratorType::KdTreeType;
using NodeType = TreeType::KdTreeNodeType;
const TreeType::Pointer tree = treeGenerator->GetOutput();
const TreeType::Pointer centroidTree = centroidTreeGenerator->GetOutput();
NodeType * root = tree->GetRoot();
if (root->IsTerminal())
{
std::cout << "Root node is a terminal node." << std::endl;
}
else
{
std::cout << "Root node is not a terminal node." << std::endl;
}
unsigned int partitionDimension;
float partitionValue;
root->GetParameters(partitionDimension, partitionValue);
std::cout << "Dimension chosen to split the space = " << partitionDimension
<< std::endl;
std::cout << "Split point on the partition dimension = " << partitionValue
<< std::endl;
std::cout << "Address of the left chile of the root node = " << root->Left()
<< std::endl;
std::cout << "Address of the right chile of the root node = "
<< root->Right() << std::endl;
root = centroidTree->GetRoot();
std::cout << "Number of the measurement vectors under the root node"
<< " in the tree hierarchy = " << root->Size() << std::endl;
NodeType::CentroidType centroid;
root->GetWeightedCentroid(centroid);
std::cout << "Sum of the measurement vectors under the root node = "
<< centroid << std::endl;
std::cout << "Number of the measurement vectors under the left child"
<< " of the root node = " << root->Left()->Size() << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the following code snippet, we query the three nearest neighbors of
// the \code{queryPoint} on the two tree. The results and procedures are
// exactly the same for both. First we define the point from which distances
// will be measured.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MeasurementVectorType queryPoint;
queryPoint[0] = 10.0;
queryPoint[1] = 7.0;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we instantiate the type of a distance metric, create an object of
// this type and set the origin of coordinates for measuring distances.
// The \code{GetMeasurementVectorSize()} method returns the length of
// each measurement vector stored in the sample.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using DistanceMetricType =
auto distanceMetric = DistanceMetricType::New();
DistanceMetricType::OriginType origin(2);
for (unsigned int i = 0; i < sample->GetMeasurementVectorSize(); ++i)
{
origin[i] = queryPoint[i];
}
distanceMetric->SetOrigin(origin);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now set the number of neighbors to be located and the point
// coordinates to be used as a reference system.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr unsigned int numberOfNeighbors = 3;
TreeType::InstanceIdentifierVectorType neighbors;
tree->Search(queryPoint, numberOfNeighbors, neighbors);
std::cout
<< "\n*** kd-tree knn search result using an Euclidean distance metric:"
<< std::endl
<< "query point = [" << queryPoint << "]" << std::endl
<< "k = " << numberOfNeighbors << std::endl;
std::cout << "measurement vector : distance from query point " << std::endl;
std::vector<double> distances1(numberOfNeighbors);
for (unsigned int i = 0; i < numberOfNeighbors; ++i)
{
distances1[i] =
distanceMetric->Evaluate(tree->GetMeasurementVector(neighbors[i]));
std::cout << "[" << tree->GetMeasurementVector(neighbors[i])
<< "] : " << distances1[i] << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Instead of using an Euclidean distance metric, Tree itself can also
// return the distance vector. Here we get the distance values from tree and
// compare them with previous values.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::vector<double> distances2;
tree->Search(queryPoint, numberOfNeighbors, neighbors, distances2);
std::cout << "\n*** kd-tree knn search result directly from tree:"
<< std::endl
<< "query point = [" << queryPoint << "]" << std::endl
<< "k = " << numberOfNeighbors << std::endl;
std::cout << "measurement vector : distance from query point " << std::endl;
for (unsigned int i = 0; i < numberOfNeighbors; ++i)
{
std::cout << "[" << tree->GetMeasurementVector(neighbors[i])
<< "] : " << distances2[i] << std::endl;
if (itk::Math::NotAlmostEquals(distances2[i], distances1[i]))
{
std::cerr << "Mismatched distance values by tree." << std::endl;
return EXIT_FAILURE;
}
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As previously indicated, the interface for finding nearest neighbors in
// the centroid tree is very similar.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::vector<double> distances3;
centroidTree->Search(queryPoint, numberOfNeighbors, neighbors, distances3);
centroidTree->Search(queryPoint, numberOfNeighbors, neighbors);
std::cout << "\n*** Weighted centroid kd-tree knn search result:"
<< std::endl
<< "query point = [" << queryPoint << "]" << std::endl
<< "k = " << numberOfNeighbors << std::endl;
std::cout
<< "measurement vector : distance_by_distMetric : distance_by_tree"
<< std::endl;
std::vector<double> distances4(numberOfNeighbors);
for (unsigned int i = 0; i < numberOfNeighbors; ++i)
{
distances4[i] = distanceMetric->Evaluate(
centroidTree->GetMeasurementVector(neighbors[i]));
std::cout << "[" << centroidTree->GetMeasurementVector(neighbors[i])
<< "] : " << distances4[i] << " : "
<< distances3[i] << std::endl;
if (itk::Math::NotAlmostEquals(distances2[i], distances1[i]))
{
std::cerr << "Mismatched distance values by centroid tree."
<< std::endl;
return EXIT_FAILURE;
}
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// KdTree also supports searching points within a hyper-spherical
// kernel. We specify the radius and call the \code{Search()} method. In
// the case of the KdTree, this is done with the following lines of code.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr double radius = 437.0;
tree->Search(queryPoint, radius, neighbors);
std::cout << "\nSearching points within a hyper-spherical kernel:"
<< std::endl;
std::cout << "*** kd-tree radius search result:" << std::endl
<< "query point = [" << queryPoint << "]" << std::endl
<< "search radius = " << radius << std::endl;
std::cout << "measurement vector : distance" << std::endl;
for (auto neighbor : neighbors)
{
std::cout << "[" << tree->GetMeasurementVector(neighbor) << "] : "
<< distanceMetric->Evaluate(
tree->GetMeasurementVector(neighbor))
<< std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the case of the centroid KdTree, the \code{Search()} method is used as
// illustrated by the following code.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
centroidTree->Search(queryPoint, radius, neighbors);
std::cout << "\n*** Weighted centroid kd-tree radius search result:"
<< std::endl
<< "query point = [" << queryPoint << "]" << std::endl
<< "search radius = " << radius << std::endl;
std::cout << "measurement vector : distance" << std::endl;
for (auto neighbor : neighbors)
{
std::cout << "[" << centroidTree->GetMeasurementVector(neighbor) << "] : "
<< distanceMetric->Evaluate(
centroidTree->GetMeasurementVector(neighbor))
<< std::endl;
}
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
This class generates a KdTree object without centroid information.
This class is the native implementation of the a Sample with an STL container.
Definition: itkListSample.h:52
This class generates a KdTree object with centroid information.
A templated class holding a n-Dimensional vector.
Definition: itkVector.h:63
static Pointer New()
SmartPointer< Self > Pointer
bool NotAlmostEquals(T1 x1, T2 x2)
Definition: itkMath.h:692