ITK  6.0.0
Insight Toolkit
Examples/Statistics/MinimumDecisionRule.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// \index{itk::Statistics::MinimumDecisionRule}
//
// The \code{Evaluate()} method of the \doxygen{MinimumDecisionRule}
// returns the index of the smallest discriminant score among the
// vector of discriminant scores that it receives as input.
//
// To begin this example, we include the class header file. We also include
// the header file for the \code{std::vector} class that will be the
// container for the discriminant scores.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include <vector>
// Software Guide : EndCodeSnippet
int
main(int, char *[])
{
// Software Guide : BeginLatex
//
// The instantiation of the function is done through the usual
// \code{New()} method and a smart pointer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using DecisionRuleType = itk::Statistics::MinimumDecisionRule;
auto decisionRule = DecisionRuleType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create the discriminant score vector and fill it with three
// values. The call \code{Evaluate( discriminantScores )} will return 0
// because the first value is the smallest value.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
DecisionRuleType::MembershipVectorType discriminantScores;
discriminantScores.push_back(0.1);
discriminantScores.push_back(0.3);
discriminantScores.push_back(0.6);
std::cout << "MinimumDecisionRule: The index of the chosen = "
<< decisionRule->Evaluate(discriminantScores) << std::endl;
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
A decision rule that returns the class label with the smallest discriminant score.
static Pointer New()