using MeasurementType = int;
void
initializeSubsample(SubsampleType * subsample, SampleType * sample)
{
subsample->SetSample(sample);
subsample->InitializeWithAllInstances();
}
void
printSubsample(SubsampleType * subsample, const char * header)
{
std::cout << std::endl;
std::cout << header << std::endl;
SubsampleType::Iterator iter = subsample->Begin();
while (iter != subsample->End())
{
std::cout << "instance identifier = " << iter.GetInstanceIdentifier()
<< " \t measurement vector = " << iter.GetMeasurementVector()
<< std::endl;
++iter;
}
}
int
main()
{
MeasurementVectorType mv;
for (unsigned int i = 5; i > 0; --i)
{
for (unsigned int j = 0; j < 2; ++j)
{
mv[j] = (MeasurementType)i;
}
for (unsigned int j = 0; j < i; ++j)
{
sample->PushBack(mv);
}
}
subsample->SetSample(sample);
initializeSubsample(subsample, sample);
printSubsample(subsample, "Unsorted");
constexpr int activeDimension = 0;
itk::Statistics::Algorithm::InsertSort<SubsampleType>(
subsample, activeDimension, 0, subsample->Size());
printSubsample(subsample, "InsertSort");
initializeSubsample(subsample, sample);
itk::Statistics::Algorithm::HeapSort<SubsampleType>(
subsample, activeDimension, 0, subsample->Size());
printSubsample(subsample, "HeapSort");
initializeSubsample(subsample, sample);
itk::Statistics::Algorithm::IntrospectiveSort<SubsampleType>(
subsample, activeDimension, 0, subsample->Size(), 16);
printSubsample(subsample, "IntrospectiveSort");
initializeSubsample(subsample, sample);
const SubsampleType::MeasurementType median =
itk::Statistics::Algorithm::QuickSelect<SubsampleType>(subsample,
activeDimension,
0,
subsample->Size(),
subsample->Size() /
2);
std::cout << std::endl;
std::cout << "Quick Select: median = " << median << std::endl;
return EXIT_SUCCESS;
}
This class is the native implementation of the a Sample with an STL container.
This class stores a subset of instance identifiers from another sample object. You can create a subsa...
A templated class holding a n-Dimensional vector.