18#ifndef itkDiscreteHessianGaussianImageFunction_h
19#define itkDiscreteHessianGaussianImageFunction_h
45template <
typename TInputImage,
typename TOutput =
double>
47 :
public ImageFunction<TInputImage, SymmetricSecondRankTensor<TOutput, TInputImage::ImageDimension>, TOutput>
69 using typename Superclass::InputImageType;
70 using typename Superclass::InputPixelType;
73 using typename Superclass::ContinuousIndexType;
77 static constexpr unsigned int ImageDimension2 = InputImageType::ImageDimension;
81 using typename Superclass::OutputType;
103#if !defined(ITK_LEGACY_REMOVE)
106 InterpolationModeEnum::NearestNeighbourInterpolation;
107 static constexpr InterpolationModeEnum LinearInterpolation = InterpolationModeEnum::LinearInterpolation;
129 itkSetVectorMacro(Variance,
double, VarianceArrayType::Length);
136 m_Variance.Fill(variance);
146 SetVariance(sigma * sigma);
154 itkSetClampMacro(MaximumError,
double, 0.00001, 0.99999);
155 itkGetConstMacro(MaximumError,
double);
161 itkSetMacro(NormalizeAcrossScale,
bool);
162 itkGetConstMacro(NormalizeAcrossScale,
bool);
163 itkBooleanMacro(NormalizeAcrossScale);
167 itkSetMacro(UseImageSpacing,
bool);
168 itkGetConstMacro(UseImageSpacing,
bool);
169 itkBooleanMacro(UseImageSpacing);
176 itkSetMacro(MaximumKernelWidth,
unsigned int);
177 itkGetConstMacro(MaximumKernelWidth,
unsigned int);
197 RecomputeGaussianKernel();
221 double m_MaximumError{ 0.005 };
226 unsigned int m_MaximumKernelWidth{ 30 };
243 bool m_NormalizeAcrossScale{
true };
246 bool m_UseImageSpacing{
true };
253#ifndef ITK_MANUAL_INSTANTIATION
254# include "itkDiscreteHessianGaussianImageFunction.hxx"
Compute the Hessian Gaussian of an image at a specific location in space by calculating discrete seco...
typename OperatorImageFunctionType::Pointer OperatorImageFunctionPointer
DiscreteHessianGaussianImageFunction()
~DiscreteHessianGaussianImageFunction() override=default
DiscreteHessianGaussianImageFunction(const Self &)
virtual void SetVariance(double variance)
void RecomputeGaussianKernel()
void PrintSelf(std::ostream &os, Indent indent) const override
OutputType EvaluateAtContinuousIndex(const ContinuousIndexType &index) const override
void SetInputImage(const InputImageType *ptr) override
void operator=(const Self &)
OutputType EvaluateAtIndex(const IndexType &index) const override
OutputType Evaluate(const PointType &point) const override
void SetSigma(const double sigma)
virtual void Initialize()
A NeighborhoodOperator whose coefficients are a one dimensional, discrete derivative Gaussian kernel.
Evaluates a function of an image at specified position.
typename InputImageType::IndexType IndexType
TInputImage InputImageType
Control indentation during Print() invocation.
Light weight base class for most itk classes.
Compute the convolution of a neighborhood operator with the image at a specific location in space,...
A light-weight container object for storing an N-dimensional neighborhood of values.
Represent a symmetric tensor of second rank.
SmartPointer< Self > Pointer
ImageBaseType::IndexType IndexType
ImageBaseType::PointType PointType
The "itk" namespace contains all Insight Segmentation and Registration Toolkit (ITK) classes....
*par Constraints *The filter image with at least two dimensions and a vector *length of at least The theory supports extension to scalar but *the implementation of the itk vector classes do not **The template parameter TRealType must be floating point(float or double) or *a user-defined "real" numerical type with arithmetic operations defined *sufficient to compute derivatives. **\par Performance *This filter will automatically multithread if run with *SetUsePrincipleComponents