ITK 6.0.0
Insight Toolkit
 
Loading...
Searching...
No Matches
itkKalmanLinearEstimator.h
Go to the documentation of this file.
1/*=========================================================================
2 *
3 * Copyright NumFOCUS
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0.txt
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 *=========================================================================*/
18#ifndef itkKalmanLinearEstimator_h
19#define itkKalmanLinearEstimator_h
20
21#include "itkMacro.h"
22
23#include "vnl/vnl_vector_fixed.h"
24#include "vnl/vnl_matrix_fixed.h"
25
26namespace itk
27{
42template <typename T, unsigned int VEstimatorDimension>
44{
45public:
48 static constexpr unsigned int Dimension = VEstimatorDimension;
49
52 using VectorType = vnl_vector_fixed<T, VEstimatorDimension>;
53
56 using MatrixType = vnl_matrix_fixed<T, VEstimatorDimension, VEstimatorDimension>;
57
62 using ValueType = T;
63
68 void
69 UpdateWithNewMeasure(const ValueType & newMeasure, const VectorType & newPredictor);
70
74 void
76 {
77 m_Estimator = VectorType(T(0));
78 }
79
82 void
84 {
85 m_Variance.set_identity();
86 }
87
94 void
95 SetVariance(const ValueType & var = 1.0)
96 {
97 m_Variance.set_identity();
98 m_Variance *= var;
99 }
100
106 void
108 {
109 m_Variance = m;
110 }
111
114 const VectorType &
116 {
117 return m_Estimator;
118 }
119
122 const MatrixType &
124 {
125 return m_Variance;
126 }
127
128private:
133 void
134 UpdateVariance(const VectorType &);
135
139
147};
148
149template <typename T, unsigned int VEstimatorDimension>
150void
152 const VectorType & newPredictor)
153{
154 const ValueType measurePrediction = dot_product(newPredictor, m_Estimator);
155
156 const ValueType errorMeasurePrediction = newMeasure - measurePrediction;
157
158 VectorType Corrector = m_Variance * newPredictor;
159
160 for (unsigned int j = 0; j < VEstimatorDimension; ++j)
161 {
162 m_Estimator(j) += Corrector(j) * errorMeasurePrediction;
163 }
164
165 UpdateVariance(newPredictor);
166}
167
168template <typename T, unsigned int VEstimatorDimension>
169void
171{
172 VectorType aux = m_Variance * newPredictor;
173
174 const ValueType denominator = 1.0 / (1.0 + dot_product(aux, newPredictor));
175
176 for (unsigned int col = 0; col < VEstimatorDimension; ++col)
177 {
178 for (unsigned int row = 0; row < VEstimatorDimension; ++row)
179 {
180 m_Variance(col, row) -= aux(col) * aux(row) * denominator;
181 }
182 }
183}
184} // end namespace itk
185
186#endif
Implement a linear recursive estimator.
void UpdateVariance(const VectorType &)
const MatrixType & GetVariance() const
vnl_vector_fixed< T, VEstimatorDimension > VectorType
vnl_matrix_fixed< T, VEstimatorDimension, VEstimatorDimension > MatrixType
const VectorType & GetEstimator() const
void SetVariance(const MatrixType &m)
void UpdateWithNewMeasure(const ValueType &newMeasure, const VectorType &newPredictor)
void SetVariance(const ValueType &var=1.0)
static constexpr unsigned int Dimension
The "itk" namespace contains all Insight Segmentation and Registration Toolkit (ITK) classes....