ITK 6.0.0
Insight Toolkit
 
Loading...
Searching...
No Matches
itkKdTreeBasedKmeansEstimator.h
Go to the documentation of this file.
1/*=========================================================================
2 *
3 * Copyright NumFOCUS
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0.txt
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 *=========================================================================*/
18#ifndef itkKdTreeBasedKmeansEstimator_h
19#define itkKdTreeBasedKmeansEstimator_h
20
21#include <vector>
22#include <unordered_map>
23
24#include "itkObject.h"
29
30namespace itk
31{
32namespace Statistics
33{
72
73template <typename TKdTree>
74class ITK_TEMPLATE_EXPORT KdTreeBasedKmeansEstimator : public Object
75{
76public:
82
84 itkNewMacro(Self);
85
87 itkOverrideGetNameOfClassMacro(KdTreeBasedKmeansEstimator);
88
90 using KdTreeNodeType = typename TKdTree::KdTreeNodeType;
91 using MeasurementType = typename TKdTree::MeasurementType;
92 using MeasurementVectorType = typename TKdTree::MeasurementVectorType;
93 using InstanceIdentifier = typename TKdTree::InstanceIdentifier;
94 using SampleType = typename TKdTree::SampleType;
95 using CentroidType = typename KdTreeNodeType::CentroidType;
96
98 using MeasurementVectorSizeType = unsigned int;
99
103 using InternalParametersType = std::vector<ParameterType>;
105
109
111
114 using MembershipFunctionVectorType = std::vector<MembershipFunctionPointer>;
117
121 GetOutput() const;
122
125 itkSetMacro(Parameters, ParametersType);
126 itkGetConstMacro(Parameters, ParametersType);
128
131 itkSetMacro(MaximumIteration, int);
132 itkGetConstMacro(MaximumIteration, int);
134
137 itkSetMacro(CentroidPositionChangesThreshold, double);
138 itkGetConstMacro(CentroidPositionChangesThreshold, double);
139
141 void
142 SetKdTree(TKdTree * tree);
143
144 const TKdTree *
145 GetKdTree() const;
146
148 itkGetConstMacro(MeasurementVectorSize, MeasurementVectorSizeType);
149
150 itkGetConstMacro(CurrentIteration, int);
151 itkGetConstMacro(CentroidPositionChanges, double);
152
157 void
159
160 using ClusterLabelsType = std::unordered_map<InstanceIdentifier, unsigned int>;
161
162 itkSetMacro(UseClusterLabels, bool);
163 itkGetConstMacro(UseClusterLabels, bool);
164 itkBooleanMacro(UseClusterLabels);
165
166protected:
168 ~KdTreeBasedKmeansEstimator() override = default;
169
170 void
171 PrintSelf(std::ostream & os, Indent indent) const override;
172
173 void
174 FillClusterLabels(KdTreeNodeType * node, int closestIndex);
175
182 {
183 public:
184 CandidateVector() = default;
185
192
193 virtual ~CandidateVector() = default;
194
196 int
197 Size() const
198 {
199 return static_cast<int>(m_Candidates.size());
200 }
201
204 void
206 {
208 m_Candidates.resize(centroids.size());
209 for (unsigned int i = 0; i < centroids.size(); ++i)
210 {
211 Candidate candidate;
212 candidate.Centroid = centroids[i];
214 candidate.WeightedCentroid.Fill(0.0);
215 candidate.Size = 0;
216 m_Candidates[i] = candidate;
217 }
218 }
219
221 void
223 {
224 centroids.resize(this->Size());
225 for (unsigned int i = 0; i < static_cast<unsigned int>(this->Size()); ++i)
226 {
227 centroids[i] = m_Candidates[i].Centroid;
228 }
229 }
230
233 void
235 {
236 for (unsigned int i = 0; i < static_cast<unsigned int>(this->Size()); ++i)
237 {
238 if (m_Candidates[i].Size > 0)
239 {
240 for (unsigned int j = 0; j < m_MeasurementVectorSize; ++j)
241 {
242 m_Candidates[i].Centroid[j] =
243 m_Candidates[i].WeightedCentroid[j] / static_cast<double>(m_Candidates[i].Size);
244 }
245 }
246 }
247 }
248
250 Candidate &
251 operator[](int index)
252 {
253 return m_Candidates[index];
254 }
255
256 private:
258 std::vector<Candidate> m_Candidates;
259
262 }; // end of class
263
269 double
271
274 int
275 GetClosestCandidate(ParameterType & measurements, std::vector<int> & validIndexes);
276
278 bool
280 ParameterType & pointB,
281 MeasurementVectorType & lowerBound,
282 MeasurementVectorType & upperBound);
283
286 void
288 std::vector<int> validIndexes,
289 MeasurementVectorType & lowerBound,
290 MeasurementVectorType & upperBound);
291
293 void
295
297 void
299
301 void
303
305 void
307
308 void
310
311private:
314
317
320
324
326 typename TKdTree::Pointer m_KdTree{};
327
330
333
334 CandidateVector m_CandidateVector{};
335
337
338 bool m_UseClusterLabels{ false };
343}; // end of class
344} // end of namespace Statistics
345} // end of namespace itk
346
347#ifndef ITK_MANUAL_INSTANTIATION
348# include "itkKdTreeBasedKmeansEstimator.hxx"
349#endif
350
351#endif
Array class with size defined at construction time.
Definition itkArray.h:48
Control indentation during Print() invocation.
Definition itkIndent.h:50
static void SetLength(T &m, const unsigned int s)
static unsigned int GetLength(const T &)
Decorates any "simple" data type (data types without smart pointers) with a DataObject API.
Implements transparent reference counting.
DistanceToCentroidMembershipFunction models class membership using a distance metric.
typename TKdTree::InstanceIdentifier InstanceIdentifier
void CopyParameters(InternalParametersType &source, ParametersType &target)
EuclideanDistanceMetric< ParameterType >::Pointer m_DistanceMetric
typename MembershipFunctionType::ConstPointer MembershipFunctionPointer
SimpleDataObjectDecorator< MembershipFunctionVectorType > MembershipFunctionVectorObjectType
int GetClosestCandidate(ParameterType &measurements, std::vector< int > &validIndexes)
void CopyParameters(InternalParametersType &source, InternalParametersType &target)
const MembershipFunctionVectorObjectType * GetOutput() const
std::vector< MembershipFunctionPointer > MembershipFunctionVectorType
void PrintPoint(ParameterType &point)
typename MembershipFunctionVectorObjectType::Pointer MembershipFunctionVectorObjectPointer
bool IsFarther(ParameterType &pointA, ParameterType &pointB, MeasurementVectorType &lowerBound, MeasurementVectorType &upperBound)
void FillClusterLabels(KdTreeNodeType *node, int closestIndex)
void CopyParameters(ParametersType &source, InternalParametersType &target)
void Filter(KdTreeNodeType *node, std::vector< int > validIndexes, MeasurementVectorType &lowerBound, MeasurementVectorType &upperBound)
std::unordered_map< InstanceIdentifier, unsigned int > ClusterLabelsType
typename DistanceToCentroidMembershipFunctionType::Pointer DistanceToCentroidMembershipFunctionPointer
void PrintSelf(std::ostream &os, Indent indent) const override
double GetSumOfSquaredPositionChanges(InternalParametersType &previous, InternalParametersType &current)
typename KdTreeNodeType::CentroidType CentroidType
MembershipFunctionBase< MeasurementVectorType > MembershipFunctionType
typename TKdTree::MeasurementVectorType MeasurementVectorType
DistanceToCentroidMembershipFunction< MeasurementVectorType > DistanceToCentroidMembershipFunctionType
void GetPoint(ParameterType &point, MeasurementVectorType measurements)
MembershipFunctionBase defines common interfaces for membership functions.
The "itk" namespace contains all Insight Segmentation and Registration Toolkit (ITK) classes....