ITK  6.0.0
Insight Toolkit
Examples/Filtering/FFTImageFilter.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// In this section we assume that you are familiar with Spectral Analysis, in
// particular with the concepts of the Fourier Transform and the numerical
// implementation of the Fast Fourier transform. If you are not familiar with
// these concepts you may want to consult first any of the many available
// introductory books to spectral
// analysis~\cite{Bracewell1999,Bracewell2004}.
//
// This example illustrates how to use the Fast Fourier Transform filter
// (FFT) for processing an image in the spectral domain. Given that FFT
// computation can be CPU intensive, there are multiple hardware specific
// implementations of FFT. It is convenient in many cases to delegate the
// actual computation of the transform to local available libraries.
// Particular examples of those libraries are
// fftw\footnote{https://www.fftw.org} and the VXL implementation of FFT. For
// this reason ITK provides a base abstract class that factorizes the
// interface to multiple specific implementations of FFT. This base class is
// the \doxygen{ForwardFFTImageFilter}, and two of its derived classes are
// \doxygen{VnlForwardFFTImageFilter} and
// \doxygen{FFTWRealToComplexConjugateImageFilter}.
//
//
// \index{itk::Forward\-FFT\-Image\-Filter}
// \index{itk::Vnl\-Forward\-FFT\-Image\-Filter}
// \index{itk::FFTW\-Forward\-FFT\-Image\-Filter}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// A typical application that uses FFT will need to include the following
// header files.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImage.h"
// Software Guide : EndCodeSnippet
int
main(int argc, char * argv[])
{
if (argc < 5)
{
std::cerr << "Usage: " << argv[0]
<< " inputScalarImage outputRealPartOfComplexImage "
"outputRealImaginaryPartOfComplexImage outputComplex"
<< std::endl;
}
// Software Guide : BeginLatex
//
// The first decision to make is related to the pixel type and dimension of
// the images on which we want to compute the Fourier transform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using PixelType = float;
constexpr unsigned int Dimension = 2;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We use the same image type in order to instantiate the FFT filter, in
// this case the \doxygen{VnlForwardFFTImageFilter}. Once the filter type is
// instantiated, we can use it for creating one object by invoking the
// \code{New()} method and assigning the result to a SmartPointer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto fftFilter = FFTFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input to this filter can be taken from a reader, for example.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ReaderType = itk::ImageFileReader<ImageType>;
auto reader = ReaderType::New();
reader->SetFileName(argv[1]);
fftFilter->SetInput(reader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The execution of the filter can be triggered by invoking the
// \code{Update()} method. Since this invocation can eventually throw an
// exception, the call must be placed inside a try/catch block.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
fftFilter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Error: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In general the output of the FFT filter will be a complex image. We can
// proceed to save this image in a file for further analysis. This can be
// done by simply instantiating an \doxygen{ImageFileWriter} using the trait
// of the output image from the FFT filter. We construct one instance of the
// writer and pass the output of the FFT filter as the input of the writer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ComplexImageType = FFTFilterType::OutputImageType;
using ComplexWriterType = itk::ImageFileWriter<ComplexImageType>;
auto complexWriter = ComplexWriterType::New();
complexWriter->SetFileName(argv[4]);
complexWriter->SetInput(fftFilter->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally we invoke the \code{Update()} method placed inside a try/catch
// block.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
complexWriter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Error: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In addition to saving the complex image into a file, we could also
// extract its real and imaginary parts for further analysis. This can be
// done with the \doxygen{ComplexToRealImageFilter} and the
// \doxygen{ComplexToImaginaryImageFilter}.
//
// We instantiate first the ImageFilter that will help us to extract the
// real part from the complex image. The \code{ComplexToRealImageFilter}
// takes as its first template parameter the type of the complex image and
// as its second template parameter it takes the type of the output image
// pixel. We create one instance of this filter and connect as its input the
// output of the FFT filter.
//
// \index{itk::ComplexToRealImageFilter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using RealFilterType =
auto realFilter = RealFilterType::New();
realFilter->SetInput(fftFilter->GetOutput());
// Software Guide : EndCodeSnippet
using WritePixelType = unsigned char;
using WriteImageType = itk::Image<WritePixelType, Dimension>;
// Software Guide : BeginLatex
//
// Since the range of intensities in the Fourier domain can be quite
// concentrated, it is convenient to rescale the image in order to
// visualize it. For this purpose we instantiate a
// \doxygen{RescaleIntensityImageFilter} that will rescale the intensities
// of the \code{real} image into a range suitable for writing in a file. We
// also set the minimum and maximum values of the output to the range of the
// pixel type used for writing.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using RescaleFilterType =
auto intensityRescaler = RescaleFilterType::New();
intensityRescaler->SetInput(realFilter->GetOutput());
intensityRescaler->SetOutputMinimum(0);
intensityRescaler->SetOutputMaximum(255);
// Software Guide : EndCodeSnippet
auto writer = WriterType::New();
writer->SetFileName(argv[2]);
writer->SetInput(intensityRescaler->GetOutput());
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Error writing the real image: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We can now instantiate the ImageFilter that will help us to extract the
// imaginary part from the complex image. The filter that we use here is
// the \doxygen{ComplexToImaginaryImageFilter}. It takes as first template
// parameter the type of the complex image and as second template parameter
// it takes the type of the output image pixel. An instance of the filter is
// created, and its input is connected to the output of the FFT filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ComplexImageType = FFTFilterType::OutputImageType;
using ImaginaryFilterType =
auto imaginaryFilter = ImaginaryFilterType::New();
imaginaryFilter->SetInput(fftFilter->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The Imaginary image can then be rescaled and saved into a file, just as
// we did with the Real part.
//
// Software Guide : EndLatex
intensityRescaler->SetInput(imaginaryFilter->GetOutput());
writer->SetFileName(argv[3]);
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Error writing the imaginary image: " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// For the sake of illustrating the use of a \doxygen{ImageFileReader} on
// Complex images, here we instantiate a reader that will load the Complex
// image that we just saved. Note that nothing special is required in this
// case. The instantiation is done just the same as for any other type of
// image, which once again illustrates the power of Generic Programming.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ComplexReaderType = itk::ImageFileReader<ComplexImageType>;
auto complexReader = ComplexReaderType::New();
complexReader->SetFileName(argv[4]);
complexReader->Update();
// Software Guide : EndCodeSnippet
// A way of testing the pixel type of an image in file is to
// invoke the ImageIO object from the reader and then call
// \code{GetPixelTypeAsString()}
complexReader->GetImageIO()->GetPixelTypeAsString(
complexReader->GetImageIO()->GetPixelType());
return EXIT_SUCCESS;
}
Computes pixel-wise the imaginary part of a complex image.
Computes pixel-wise the real(x) part of a complex image.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
Templated n-dimensional image class.
Definition: itkImage.h:89
Applies a linear transformation to the intensity levels of the input Image.
VNL based forward Fast Fourier Transform.
static Pointer New()