ITK  6.0.0
Insight Toolkit
Examples/RegistrationITKv4/DeformableRegistration3.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example demonstrates how to use a variant of the ``demons'' algorithm
// to deformably register two images. This variant uses a different
// formulation for computing the forces to be applied to the image in order to
// compute the deformation fields. The variant uses both the gradient of the
// fixed image and the gradient of the deformed moving image in order to
// compute the forces. This mechanism for computing the forces introduces a
// symmetry with respect to the choice of the fixed and moving images. This
// symmetry only holds during the computation of one iteration of the PDE
// updates. It is unlikely that total symmetry may be achieved by this
// mechanism for the entire registration process.
//
// The first step for using this filter is to include the following header
// files.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// The following section of code implements a Command observer
// that will monitor the evolution of the registration process.
//
class CommandIterationUpdate : public itk::Command
{
public:
using Self = CommandIterationUpdate;
itkNewMacro(CommandIterationUpdate);
protected:
CommandIterationUpdate() = default;
using InternalImageType = itk::Image<float, 2>;
using VectorPixelType = itk::Vector<float, 2>;
using DisplacementFieldType = itk::Image<VectorPixelType, 2>;
using RegistrationFilterType =
InternalImageType,
DisplacementFieldType>;
public:
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
const auto * filter = static_cast<const RegistrationFilterType *>(object);
if (!(itk::IterationEvent().CheckEvent(&event)))
{
return;
}
std::cout << filter->GetMetric() << std::endl;
}
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImageFile " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Second, we declare the types of the images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr unsigned int Dimension = 2;
using PixelType = unsigned short;
using FixedImageType = itk::Image<PixelType, Dimension>;
using MovingImageType = itk::Image<PixelType, Dimension>;
// Software Guide : EndCodeSnippet
// Set up the file readers
using FixedImageReaderType = itk::ImageFileReader<FixedImageType>;
using MovingImageReaderType = itk::ImageFileReader<MovingImageType>;
auto fixedImageReader = FixedImageReaderType::New();
auto movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
// Software Guide : BeginLatex
//
// Image file readers are set up in a similar fashion to previous examples.
// To support the re-mapping of the moving image intensity, we declare an
// internal image type with a floating point pixel type and cast the input
// images to the internal image type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using InternalPixelType = float;
using InternalImageType = itk::Image<InternalPixelType, Dimension>;
using FixedImageCasterType =
using MovingImageCasterType =
auto fixedImageCaster = FixedImageCasterType::New();
auto movingImageCaster = MovingImageCasterType::New();
fixedImageCaster->SetInput(fixedImageReader->GetOutput());
movingImageCaster->SetInput(movingImageReader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The demons algorithm relies on the assumption that pixels representing
// the same homologous point on an object have the same intensity on both
// the fixed and moving images to be registered. In this example, we will
// preprocess the moving image to match the intensity between the images
// using the \doxygen{HistogramMatchingImageFilter}.
//
// \index{itk::Histogram\-Matching\-Image\-Filter}
//
// The basic idea is to match the histograms of the two images at a
// user-specified number of quantile values. For robustness, the histograms
// are matched so that the background pixels are excluded from both
// histograms. For MR images, a simple procedure is to exclude all gray
// values that are smaller than the mean gray value of the image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using MatchingFilterType =
auto matcher = MatchingFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// For this example, we set the moving image as the source or input image
// and the fixed image as the reference image.
//
// \index{itk::Histogram\-Matching\-Image\-Filter!SetInput()}
// \index{itk::Histogram\-Matching\-Image\-Filter!SetSourceImage()}
// \index{itk::Histogram\-Matching\-Image\-Filter!SetReferenceImage()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
matcher->SetInput(movingImageCaster->GetOutput());
matcher->SetReferenceImage(fixedImageCaster->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We then select the number of bins to represent the histograms and the
// number of points or quantile values where the histogram is to be
// matched.
//
// \index{itk::Histogram\-Matching\-Image\-Filter!Set\-Number\-Of\-Histogram\-Levels()}
// \index{itk::Histogram\-Matching\-Image\-Filter!Set\-Number\-Of\-Match\-Points()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
matcher->SetNumberOfHistogramLevels(1024);
matcher->SetNumberOfMatchPoints(7);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Simple background extraction is done by thresholding at the mean
// intensity.
//
// \index{itk::Histogram\-Matching\-Image\-Filter!Threshold\-At\-Mean\-Intensity\-On()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
matcher->ThresholdAtMeanIntensityOn();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the \doxygen{SymmetricForcesDemonsRegistrationFilter}, the deformation
// field is represented as an image whose pixels are floating point vectors.
//
// \index{itk::Symmetric\-Forces\-Demons\-Registration\-Filter}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using VectorPixelType = itk::Vector<float, Dimension>;
using DisplacementFieldType = itk::Image<VectorPixelType, Dimension>;
using RegistrationFilterType =
InternalImageType,
DisplacementFieldType>;
auto filter = RegistrationFilterType::New();
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the registration filter.
//
auto observer = CommandIterationUpdate::New();
filter->AddObserver(itk::IterationEvent(), observer);
// Software Guide : BeginLatex
//
// The input fixed image is simply the output of the fixed image casting
// filter. The input moving image is the output of the histogram matching
// filter.
//
// \index{itk::Symmetric\-Forces\-Demons\-Registration\-Filter!SetFixedImage()}
// \index{itk::Symmetric\-Forces\-Demons\-Registration\-Filter!SetMovingImage()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetFixedImage(fixedImageCaster->GetOutput());
filter->SetMovingImage(matcher->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The demons registration filter has two parameters: the number of
// iterations to be performed and the standard deviation of the Gaussian
// smoothing kernel to be applied to the deformation field after each
// iteration.
// \index{itk::Symmetric\-Forces\-Demons\-Registration\-Filter!SetNumberOfIterations()}
// \index{itk::Symmetric\-Forces\-Demons\-Registration\-Filter!SetStandardDeviations()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->SetNumberOfIterations(50);
filter->SetStandardDeviations(1.0);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration algorithm is triggered by updating the filter. The
// filter output is the computed deformation field.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
filter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \doxygen{ResampleImageFilter} can be used to warp the moving image
// with the output deformation field. The \doxygen{ResampleImageFilter}
// requires specifications for the input image to be resampled: an
// input image interpolator, a transform and the output image's
// meta-data can be set from a reference image.
//
// \index{itk::ResampleImageFilter}
// \index{itk::ResampleImageFilter!SetInput()}
// \index{itk::ResampleImageFilter!SetReferenceImage()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using InterpolatorPrecisionType = double;
using TransformPrecisionType = float;
using WarperType = itk::ResampleImageFilter<MovingImageType,
MovingImageType,
InterpolatorPrecisionType,
TransformPrecisionType>;
using InterpolatorType =
InterpolatorPrecisionType>;
auto warper = WarperType::New();
auto interpolator = InterpolatorType::New();
const FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
warper->SetInput(movingImageReader->GetOutput());
warper->SetInterpolator(interpolator);
warper->UseReferenceImageOn();
warper->SetReferenceImage(fixedImage);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The displacement field is not an itk::Transform type. The
// ResampleImageFilter requires an itk::Transform as input, so a
// DisplacementFieldTransform needs to be constructed. The
// resulting warped or resampled image is written to file as per
// previous examples.
//
// \index{itk::ResampleImageFilter!SetTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using DisplacementFieldTransformType =
auto displacementTransform = DisplacementFieldTransformType::New();
displacementTransform->SetDisplacementField(filter->GetOutput());
warper->SetTransform(displacementTransform);
// Software Guide : EndCodeSnippet
// Write warped image out to file
using OutputPixelType = unsigned char;
using OutputImageType = itk::Image<OutputPixelType, Dimension>;
using CastFilterType =
auto writer = WriterType::New();
auto caster = CastFilterType::New();
writer->SetFileName(argv[3]);
caster->SetInput(warper->GetOutput());
writer->SetInput(caster->GetOutput());
writer->Update();
// Software Guide : BeginLatex
//
// Let's execute this example using the rat lung data from the previous
// example. The associated data files can be found in \code{Examples/Data}:
//
// \begin{itemize}
// \item \code{RatLungSlice1.mha}
// \item \code{RatLungSlice2.mha}
// \end{itemize}
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{DeformableRegistration2CheckerboardBefore}
// \includegraphics[width=0.44\textwidth]{DeformableRegistration2CheckerboardAfter}
// \itkcaption[Demon's deformable registration output]{Checkerboard
// comparisons before and after demons-based deformable registration.}
// \label{fig:DeformableRegistration3Output}
// \end{figure}
//
// The result of the demons-based deformable registration is presented in
// Figure \ref{fig:DeformableRegistration3Output}. The checkerboard
// comparison shows that the algorithm was able to recover the misalignment
// due to expiration.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// It may be also desirable to write the deformation field as an image of
// vectors. This can be done with the following code.
//
// Software Guide : EndLatex
if (argc > 4) // if a fourth line argument has been provided...
{
// Software Guide : BeginCodeSnippet
auto fieldWriter = FieldWriterType::New();
fieldWriter->SetFileName(argv[4]);
fieldWriter->SetInput(filter->GetOutput());
fieldWriter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the file format used for writing the deformation field must
// be capable of representing multiple components per pixel. This is the
// case for the MetaImage and VTK file formats for example.
//
// Software Guide : EndLatex
}
return EXIT_SUCCESS;
}
Pixel-wise addition of two images.
Casts input pixels to output pixel type.
Superclass for callback/observer methods.
Definition: itkCommand.h:46
virtual void Execute(Object *caller, const EventObject &event)=0
Provides local/dense/high-dimensionality transformation via a a displacement field.
Abstraction of the Events used to communicating among filters and with GUIs.
Normalize the grayscale values for a source image by matching the shape of the source image histogram...
Data source that reads image data from a single file.
Writes image data to a single file.
Templated n-dimensional image class.
Definition: itkImage.h:89
Linearly interpolate an image at specified positions.
Base class for most ITK classes.
Definition: itkObject.h:62
Resample an image via a coordinate transform.
Implements transparent reference counting.
Deformably register two images using the demons algorithm.
A templated class holding a n-Dimensional vector.
Definition: itkVector.h:63
static Pointer New()
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
class ITK_FORWARD_EXPORT Command
Definition: itkObject.h:42