{
public:
using Self = CommandIterationUpdate;
protected:
CommandIterationUpdate() { m_LastMetricValue = 0; }
public:
using OptimizerPointer = const OptimizerType *;
void
{
}
void
{
auto optimizer = static_cast<OptimizerPointer>(object);
if (!itk::IterationEvent().CheckEvent(&event))
{
return;
}
const double currentValue = optimizer->GetValue();
{
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << currentValue << " ";
std::cout << optimizer->GetFrobeniusNorm() << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
m_LastMetricValue = currentValue;
}
}
private:
double m_LastMetricValue;
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << "outputImagefile [numberOfHistogramBins] ";
std::cerr << "[initialRadius] [epsilon]" << std::endl;
std::cerr << "[initialAngle(radians)] [initialTx] [initialTy]"
<< std::endl;
return EXIT_FAILURE;
}
using PixelType = unsigned char;
using InterpolatorType =
using RegistrationType =
using MetricType =
FixedImageType,
MovingImageType>;
auto transform = TransformType::New();
auto optimizer = OptimizerType::New();
auto interpolator = InterpolatorType::New();
auto registration = RegistrationType::New();
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);
auto metric = MetricType::New();
registration->SetMetric(metric);
unsigned int numberOfHistogramBins = 32;
if (argc > 4)
{
numberOfHistogramBins = std::stoi(argv[4]);
std::cout << "Using " << numberOfHistogramBins << " Histogram bins"
<< std::endl;
}
MetricType::HistogramType::SizeType histogramSize;
histogramSize.SetSize(2);
histogramSize[0] = numberOfHistogramBins;
histogramSize[1] = numberOfHistogramBins;
metric->SetHistogramSize(histogramSize);
const unsigned int numberOfParameters = transform->GetNumberOfParameters();
using ScalesType = MetricType::ScalesType;
ScalesType scales(numberOfParameters);
scales.Fill(1.0);
metric->SetDerivativeStepLengthScales(scales);
auto fixedImageReader = FixedImageReaderType::New();
auto movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
registration->SetFixedImage(fixedImageReader->GetOutput());
registration->SetMovingImage(movingImageReader->GetOutput());
fixedImageReader->Update();
movingImageReader->Update();
const FixedImageType::ConstPointer fixedImage =
fixedImageReader->GetOutput();
registration->SetFixedImageRegion(fixedImage->GetBufferedRegion());
using TransformInitializerType =
FixedImageType,
MovingImageType>;
auto initializer = TransformInitializerType::New();
initializer->SetTransform(transform);
initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());
initializer->GeometryOn();
initializer->InitializeTransform();
double initialAngle = 0.0;
if (argc > 7)
{
initialAngle = std::stod(argv[7]);
}
transform->SetAngle(initialAngle);
TransformType::OutputVectorType initialTranslation =
transform->GetTranslation();
if (argc > 9)
{
initialTranslation[0] += std::stod(argv[8]);
initialTranslation[1] += std::stod(argv[9]);
}
transform->SetTranslation(initialTranslation);
using ParametersType = RegistrationType::ParametersType;
const ParametersType initialParameters = transform->GetParameters();
registration->SetInitialTransformParameters(initialParameters);
std::cout << "Initial transform parameters = ";
std::cout << initialParameters << std::endl;
using OptimizerScalesType = OptimizerType::ScalesType;
OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());
const FixedImageType::RegionType region =
fixedImage->GetLargestPossibleRegion();
FixedImageType::SizeType size = region.GetSize();
FixedImageType::SpacingType spacing = fixedImage->GetSpacing();
optimizerScales[0] = 1.0 / 0.1;
optimizerScales[1] = 1.0 / (0.1 * size[0] * spacing[0]);
optimizerScales[2] = 1.0 / (0.1 * size[1] * spacing[1]);
std::cout << "optimizerScales = " << optimizerScales << std::endl;
optimizer->SetScales(optimizerScales);
auto generator = GeneratorType::New();
generator->Initialize(12345);
optimizer->MaximizeOn();
optimizer->SetNormalVariateGenerator(generator);
double initialRadius = 0.05;
if (argc > 5)
{
initialRadius = std::stod(argv[5]);
std::cout << "Using initial radius = " << initialRadius << std::endl;
}
optimizer->Initialize(initialRadius);
double epsilon = 0.001;
if (argc > 6)
{
epsilon = std::stod(argv[6]);
std::cout << "Using epsilon = " << epsilon << std::endl;
}
optimizer->SetEpsilon(epsilon);
optimizer->SetMaximumIteration(2000);
auto observer = CommandIterationUpdate::New();
optimizer->AddObserver(itk::IterationEvent(), observer);
try
{
registration->Update();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
using ParametersType = RegistrationType::ParametersType;
ParametersType finalParameters = registration->GetLastTransformParameters();
const double finalAngle = finalParameters[0];
const double finalTranslationX = finalParameters[1];
const double finalTranslationY = finalParameters[2];
const double rotationCenterX =
registration->GetOutput()->Get()->GetFixedParameters()[0];
const double rotationCenterY =
registration->GetOutput()->Get()->GetFixedParameters()[1];
const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
const double bestValue = optimizer->GetValue();
const double finalAngleInDegrees = finalAngle * 180.0 /
itk::Math::pi;
std::cout << " Result = " << std::endl;
std::cout << " Angle (radians) " << finalAngle << std::endl;
std::cout << " Angle (degrees) " << finalAngleInDegrees << std::endl;
std::cout << " Translation X = " << finalTranslationX << std::endl;
std::cout << " Translation Y = " << finalTranslationY << std::endl;
std::cout << " Fixed Center X = " << rotationCenterX << std::endl;
std::cout << " Fixed Center Y = " << rotationCenterY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
using ResampleFilterType =
auto finalTransform = TransformType::New();
finalTransform->SetParameters(finalParameters);
finalTransform->SetFixedParameters(transform->GetFixedParameters());
auto resample = ResampleFilterType::New();
resample->SetTransform(finalTransform);
resample->SetInput(movingImageReader->GetOutput());
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
auto writer = WriterType::New();
writer->SetFileName(argv[3]);
writer->SetInput(resample->GetOutput());
writer->Update();
return EXIT_SUCCESS;
}
Superclass for callback/observer methods.
virtual void Execute(Object *caller, const EventObject &event)=0
Abstraction of the Events used to communicating among filters and with GUIs.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
Base class for Image Registration Methods.
Templated n-dimensional image class.
Linearly interpolate an image at specified positions.
Base class for most ITK classes.
1+1 evolutionary strategy optimizer
Resample an image via a coordinate transform.
Implements transparent reference counting.
Normal random variate generator.
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
constexpr unsigned int Dimension
static constexpr double pi