ITK  6.0.0
Insight Toolkit
Examples/RegistrationITKv4/ImageRegistration16.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to do registration with a 2D Translation
// Transform, the Normalized Mutual Information metric and the Amoeba
// optimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
using Self = CommandIterationUpdate;
itkNewMacro(Self);
protected:
CommandIterationUpdate() { m_IterationNumber = 0; }
public:
using OptimizerType = itk::AmoebaOptimizer;
using OptimizerPointer = const OptimizerType *;
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
auto optimizer = static_cast<OptimizerPointer>(object);
if (!itk::IterationEvent().CheckEvent(&event))
{
return;
}
std::cout << m_IterationNumber++ << " ";
std::cout << optimizer->GetCachedValue() << " ";
std::cout << optimizer->GetCachedCurrentPosition() << std::endl;
}
private:
unsigned long m_IterationNumber;
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImagefile ";
std::cerr << " [initialTx] [initialTy]";
std::cerr << "[useExplicitPDFderivatives ] " << std::endl;
return EXIT_FAILURE;
}
constexpr unsigned int Dimension = 2;
using PixelType = unsigned char;
using FixedImageType = itk::Image<PixelType, Dimension>;
using MovingImageType = itk::Image<PixelType, Dimension>;
using OptimizerType = itk::AmoebaOptimizer;
using InterpolatorType =
using RegistrationType =
using MetricType =
MovingImageType>;
auto transform = TransformType::New();
auto optimizer = OptimizerType::New();
auto interpolator = InterpolatorType::New();
auto registration = RegistrationType::New();
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);
auto metric = MetricType::New();
registration->SetMetric(metric);
// Software Guide : BeginLatex
//
// The metric requires two parameters to be selected: the number
// of bins used to compute the entropy and the number of spatial samples
// used to compute the density estimates. In typical application, 50
// histogram bins are sufficient and the metric is relatively insensitive
// to changes in the number of bins. The number of spatial samples
// to be used depends on the content of the image. If the images are
// smooth and do not contain much detail, then using approximately
// $1$ percent of the pixels will do. On the other hand, if the images
// are detailed, it may be necessary to use a much higher proportion,
// such as $20$ percent.
//
// \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfHistogramBins()}
// \index{itk::Mattes\-Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfSpatialSamples()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
metric->SetNumberOfHistogramBins(20);
metric->SetNumberOfSpatialSamples(10000);
// Software Guide : EndCodeSnippet
// For consistent results when regression testing.
metric->ReinitializeSeed(121212);
if (argc > 6)
{
// Define whether to calculate the metric derivative by explicitly
// computing the derivatives of the joint PDF with respect to the
// Transform parameters, or doing it by progressively accumulating
// contributions from each bin in the joint PDF.
metric->SetUseExplicitPDFDerivatives(std::stoi(argv[6]));
}
const unsigned int numberOfParameters = transform->GetNumberOfParameters();
using FixedImageReaderType = itk::ImageFileReader<FixedImageType>;
using MovingImageReaderType = itk::ImageFileReader<MovingImageType>;
auto fixedImageReader = FixedImageReaderType::New();
auto movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
registration->SetFixedImage(fixedImageReader->GetOutput());
registration->SetMovingImage(movingImageReader->GetOutput());
fixedImageReader->Update();
movingImageReader->Update();
const FixedImageType::ConstPointer fixedImage =
fixedImageReader->GetOutput();
registration->SetFixedImageRegion(fixedImage->GetBufferedRegion());
transform->SetIdentity();
using ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters = transform->GetParameters();
initialParameters[0] = 0.0;
initialParameters[1] = 0.0;
if (argc > 5)
{
initialParameters[0] = std::stod(argv[4]);
initialParameters[1] = std::stod(argv[5]);
}
registration->SetInitialTransformParameters(initialParameters);
std::cout << "Initial transform parameters = ";
std::cout << initialParameters << std::endl;
// Software Guide : BeginLatex
//
// The AmoebaOptimizer moves a simplex around the cost surface. Here we
// set the initial size of the simplex (5 units in each of the parameters)
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OptimizerType::ParametersType simplexDelta(numberOfParameters);
simplexDelta.Fill(5.0);
optimizer->AutomaticInitialSimplexOff();
optimizer->SetInitialSimplexDelta(simplexDelta);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also adjust the tolerances on the optimizer to define convergence.
// Here, we used a tolerance on the parameters of 0.1 (which will be one
// tenth of image unit, in this case pixels). We also set the tolerance on
// the cost function value to define convergence. The metric we are using
// returns the value of Mutual Information. So we set the function
// convergence to be 0.001 bits (bits are the appropriate units for
// measuring Information).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetParametersConvergenceTolerance(0.1); // 1/10th pixel
optimizer->SetFunctionConvergenceTolerance(0.001); // 0.001 bits
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the case where the optimizer never succeeds in reaching the desired
// precision tolerance, it is prudent to establish a limit on the number of
// iterations to be performed. This maximum number is defined with the
// method \code{SetMaximumNumberOfIterations()}.
//
// \index{itk::Amoeba\-Optimizer!SetMaximumNumberOfIterations()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetMaximumNumberOfIterations(200);
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
auto observer = CommandIterationUpdate::New();
optimizer->AddObserver(itk::IterationEvent(), observer);
try
{
registration->Update();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch (const itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
ParametersType finalParameters = registration->GetLastTransformParameters();
const double finalTranslationX = finalParameters[0];
const double finalTranslationY = finalParameters[1];
const double bestValue = optimizer->GetValue();
// Print out results
//
std::cout << "Result = " << std::endl;
std::cout << " Translation X = " << finalTranslationX << std::endl;
std::cout << " Translation Y = " << finalTranslationY << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
using ResampleFilterType =
auto finalTransform = TransformType::New();
finalTransform->SetParameters(finalParameters);
finalTransform->SetFixedParameters(transform->GetFixedParameters());
auto resample = ResampleFilterType::New();
resample->SetTransform(finalTransform);
resample->SetInput(movingImageReader->GetOutput());
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
using OutputImageType = itk::Image<PixelType, Dimension>;
auto writer = WriterType::New();
writer->SetFileName(argv[3]);
writer->SetInput(resample->GetOutput());
writer->Update();
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
Pixel-wise addition of two images.
Wrap of the vnl_amoeba algorithm.
Superclass for callback/observer methods.
Definition: itkCommand.h:46
virtual void Execute(Object *caller, const EventObject &event)=0
Abstraction of the Events used to communicating among filters and with GUIs.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
Base class for Image Registration Methods.
Templated n-dimensional image class.
Definition: itkImage.h:89
Linearly interpolate an image at specified positions.
Computes the mutual information between two images to be registered using the method of Mattes et al.
Base class for most ITK classes.
Definition: itkObject.h:62
Resample an image via a coordinate transform.
Translation transformation of a vector space (e.g. space coordinates)
SmartPointer< const Self > ConstPointer
static Pointer New()
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
class ITK_FORWARD_EXPORT Command
Definition: itkObject.h:42