ITK  6.0.0
Insight Toolkit
Examples/RegistrationITKv4/IterativeClosestPoint3.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to perform Iterative Closest Point (ICP)
// registration in ITK using a DistanceMap in order to increase the
// performance. There is of course a trade-off between the time needed for
// computing the DistanceMap and the time saved by its repeated use during the
// iterative computation of the point-to-point distances. It is then necessary
// in practice to ponder both factors.
//
// \doxygen{EuclideanDistancePointMetric}.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The first step is to include the relevant headers.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include <iostream>
#include <fstream>
// Software Guide : EndCodeSnippet
int
main(int argc, char * argv[])
{
if (argc < 3)
{
std::cerr << "Arguments Missing. " << std::endl;
std::cerr
<< "Usage: IterativeClosestPoint3 fixedPointsFile movingPointsFile "
<< std::endl;
return EXIT_FAILURE;
}
constexpr unsigned int Dimension = 2;
// Software Guide : BeginLatex
//
// Next, define the necessary types for the fixed and moving point sets.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using PointSetType = itk::PointSet<float, Dimension>;
auto fixedPointSet = PointSetType::New();
auto movingPointSet = PointSetType::New();
using PointsContainer = PointSetType::PointsContainer;
auto fixedPointContainer = PointsContainer::New();
auto movingPointContainer = PointsContainer::New();
PointType fixedPoint;
PointType movingPoint;
// Software Guide : EndCodeSnippet
// Read the file containing coordinates of fixed points.
std::ifstream fixedFile;
fixedFile.open(argv[1]);
if (fixedFile.fail())
{
std::cerr << "Error opening points file with name : " << std::endl;
std::cerr << argv[1] << std::endl;
return EXIT_FAILURE;
}
unsigned int pointId = 0;
fixedFile >> fixedPoint;
while (!fixedFile.eof())
{
fixedPointContainer->InsertElement(pointId, fixedPoint);
fixedFile >> fixedPoint;
pointId++;
}
fixedPointSet->SetPoints(fixedPointContainer);
std::cout << "Number of fixed Points = "
<< fixedPointSet->GetNumberOfPoints() << std::endl;
// Read the file containing coordinates of moving points.
std::ifstream movingFile;
movingFile.open(argv[2]);
if (movingFile.fail())
{
std::cerr << "Error opening points file with name : " << std::endl;
std::cerr << argv[2] << std::endl;
return EXIT_FAILURE;
}
pointId = 0;
movingFile >> movingPoint;
while (!movingFile.eof())
{
movingPointContainer->InsertElement(pointId, movingPoint);
movingFile >> movingPoint;
pointId++;
}
movingPointSet->SetPoints(movingPointContainer);
std::cout << "Number of moving Points = "
<< movingPointSet->GetNumberOfPoints() << std::endl;
// Software Guide : BeginLatex
//
// Setup the metric, transform, optimizers and registration in a manner
// similar to the previous two examples.
//
// Software Guide : EndLatex
using MetricType =
auto metric = MetricType::New();
//-----------------------------------------------------------
// Set up a Transform
//-----------------------------------------------------------
auto transform = TransformType::New();
// Optimizer Type
using OptimizerType = itk::LevenbergMarquardtOptimizer;
auto optimizer = OptimizerType::New();
optimizer->SetUseCostFunctionGradient(false);
// Registration Method
using RegistrationType =
auto registration = RegistrationType::New();
// Scale the translation components of the Transform in the Optimizer
OptimizerType::ScalesType scales(transform->GetNumberOfParameters());
scales.Fill(0.01);
constexpr unsigned long numberOfIterations = 100;
constexpr double gradientTolerance = 1e-5; // convergence criterion
constexpr double valueTolerance = 1e-5; // convergence criterion
constexpr double epsilonFunction = 1e-6; // convergence criterion
optimizer->SetScales(scales);
optimizer->SetNumberOfIterations(numberOfIterations);
optimizer->SetValueTolerance(valueTolerance);
optimizer->SetGradientTolerance(gradientTolerance);
optimizer->SetEpsilonFunction(epsilonFunction);
// Start from an Identity transform (in a normal case, the user
// can probably provide a better guess than the identity...
transform->SetIdentity();
registration->SetInitialTransformParameters(transform->GetParameters());
//------------------------------------------------------
// Connect all the components required for Registration
//------------------------------------------------------
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetFixedPointSet(fixedPointSet);
registration->SetMovingPointSet(movingPointSet);
//------------------------------------------------------
// Prepare the Distance Map in order to accelerate
// distance computations.
//------------------------------------------------------
//
// First map the Fixed Points into a binary image.
// This is needed because the DanielssonDistance
// filter expects an image as input.
//
//-------------------------------------------------
// Software Guide : BeginLatex
//
// In the preparation of the distance map, we first need to map the fixed
// points into a binary image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using BinaryImageType = itk::Image<unsigned char, Dimension>;
using PointsToImageFilterType =
auto pointsToImageFilter = PointsToImageFilterType::New();
pointsToImageFilter->SetInput(fixedPointSet);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Continue to prepare the distance map, in order to accelerate the distance
// computations.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
pointsToImageFilter->Update();
const BinaryImageType::Pointer binaryImage =
pointsToImageFilter->GetOutput();
using DistanceImageType = itk::Image<unsigned short, Dimension>;
using DistanceFilterType =
auto distanceFilter = DistanceFilterType::New();
distanceFilter->SetInput(binaryImage);
distanceFilter->Update();
metric->SetDistanceMap(distanceFilter->GetOutput());
// Software Guide : EndCodeSnippet
try
{
registration->Update();
}
catch (const itk::ExceptionObject & e)
{
std::cerr << e << std::endl;
return EXIT_FAILURE;
}
std::cout << "Solution = " << transform->GetParameters() << std::endl;
return EXIT_SUCCESS;
}
This filter computes the distance map of the input image as an approximation with pixel accuracy to t...
Computes the minimum distance between a moving point-set and a fixed point-set. A vector of minimum c...
Standard exception handling object.
Templated n-dimensional image class.
Definition: itkImage.h:89
Wrap of the vnl_levenberg_marquardt algorithm.
Base class for filters that take a PointSet as input and produce an image as output....
Base class for PointSet to PointSet Registration Methods.
A superclass of the N-dimensional mesh structure; supports point (geometric coordinate and attribute)...
Definition: itkPointSet.h:82
Translation transformation of a vector space (e.g. space coordinates)
static Pointer New()
SmartPointer< Self > Pointer
static constexpr double e
Definition: itkMath.h:56