ITK  6.0.0
Insight Toolkit
Examples/RegistrationITKv4/MultiResImageRegistration3.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
//
// This example is the 3D version of the 2D example in
// MultiResImageRegistration1.cxx
//
#include "itkImage.h"
#include "itkCommand.h"
template <typename TRegistration>
class RegistrationInterfaceCommand : public itk::Command
{
public:
using Self = RegistrationInterfaceCommand;
itkNewMacro(Self);
protected:
RegistrationInterfaceCommand() = default;
public:
using RegistrationType = TRegistration;
using RegistrationPointer = RegistrationType *;
using OptimizerPointer = OptimizerType *;
void
Execute(itk::Object * object, const itk::EventObject & event) override
{
if (!(itk::IterationEvent().CheckEvent(&event)))
{
return;
}
auto registration = static_cast<RegistrationPointer>(object);
if (registration == nullptr)
{
return;
}
auto optimizer =
static_cast<OptimizerPointer>(registration->GetModifiableOptimizer());
std::cout << "-------------------------------------" << std::endl;
std::cout << "MultiResolution Level : " << registration->GetCurrentLevel()
<< std::endl;
std::cout << std::endl;
if (registration->GetCurrentLevel() == 0)
{
optimizer->SetMaximumStepLength(16.00);
optimizer->SetMinimumStepLength(0.01);
}
else
{
optimizer->SetMaximumStepLength(optimizer->GetMaximumStepLength() /
4.0);
optimizer->SetMinimumStepLength(optimizer->GetMinimumStepLength() /
10.0);
}
}
void
Execute(const itk::Object *, const itk::EventObject &) override
{
return;
}
};
// The following section of code implements an observer
// that will monitor the evolution of the registration process.
//
class CommandIterationUpdate : public itk::Command
{
public:
using Self = CommandIterationUpdate;
itkNewMacro(Self);
protected:
CommandIterationUpdate() = default;
public:
using OptimizerPointer = const OptimizerType *;
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
auto optimizer = static_cast<OptimizerPointer>(object);
if (!(itk::IterationEvent().CheckEvent(&event)))
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImagefile [backgroundGrayLevel]";
std::cerr << " [checkerBoardBefore] [checkerBoardAfter]";
std::cerr << " [useExplicitPDFderivatives ] " << std::endl;
std::cerr << " [numberOfBins] [numberOfSamples ] " << std::endl;
return EXIT_FAILURE;
}
constexpr unsigned int Dimension = 3;
using PixelType = unsigned short;
using FixedImageType = itk::Image<PixelType, Dimension>;
using MovingImageType = itk::Image<PixelType, Dimension>;
using InternalPixelType = float;
using InternalImageType = itk::Image<InternalPixelType, Dimension>;
using InterpolatorType =
using MetricType =
InternalImageType>;
using RegistrationType =
InternalImageType>;
using FixedImagePyramidType =
InternalImageType>;
using MovingImagePyramidType =
InternalImageType>;
// All the components are instantiated using their \code{New()} method
// and connected to the registration object as in previous example.
//
auto transform = TransformType::New();
auto optimizer = OptimizerType::New();
auto interpolator = InterpolatorType::New();
auto registration = RegistrationType::New();
auto metric = MetricType::New();
auto fixedImagePyramid = FixedImagePyramidType::New();
auto movingImagePyramid = MovingImagePyramidType::New();
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);
registration->SetMetric(metric);
registration->SetFixedImagePyramid(fixedImagePyramid);
registration->SetMovingImagePyramid(movingImagePyramid);
using FixedImageReaderType = itk::ImageFileReader<FixedImageType>;
using MovingImageReaderType = itk::ImageFileReader<MovingImageType>;
auto fixedImageReader = FixedImageReaderType::New();
auto movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
using FixedCastFilterType =
using MovingCastFilterType =
auto fixedCaster = FixedCastFilterType::New();
auto movingCaster = MovingCastFilterType::New();
fixedCaster->SetInput(fixedImageReader->GetOutput());
movingCaster->SetInput(movingImageReader->GetOutput());
registration->SetFixedImage(fixedCaster->GetOutput());
registration->SetMovingImage(movingCaster->GetOutput());
fixedCaster->Update();
registration->SetFixedImageRegion(
fixedCaster->GetOutput()->GetBufferedRegion());
using ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters(transform->GetNumberOfParameters());
initialParameters[0] = 0.0; // Initial offset in mm along X
initialParameters[1] = 0.0; // Initial offset in mm along Y
initialParameters[2] = 0.0; // Initial offset in mm along Z
registration->SetInitialTransformParameters(initialParameters);
metric->SetNumberOfHistogramBins(128);
metric->SetNumberOfSpatialSamples(50000);
if (argc > 8)
{
// optionally, override the values with numbers taken from the command
// line arguments.
metric->SetNumberOfHistogramBins(std::stoi(argv[8]));
}
if (argc > 9)
{
// optionally, override the values with numbers taken from the command
// line arguments.
metric->SetNumberOfSpatialSamples(std::stoi(argv[9]));
}
metric->ReinitializeSeed(76926294);
if (argc > 7)
{
// Define whether to calculate the metric derivative by explicitly
// computing the derivatives of the joint PDF with respect to the
// Transform parameters, or doing it by progressively accumulating
// contributions from each bin in the joint PDF.
metric->SetUseExplicitPDFDerivatives(std::stoi(argv[7]));
}
optimizer->SetNumberOfIterations(200);
optimizer->SetRelaxationFactor(0.9);
// Create the Command observer and register it with the optimizer.
//
auto observer = CommandIterationUpdate::New();
optimizer->AddObserver(itk::IterationEvent(), observer);
using CommandType = RegistrationInterfaceCommand<RegistrationType>;
auto command = CommandType::New();
registration->AddObserver(itk::IterationEvent(), command);
registration->SetNumberOfLevels(3);
try
{
registration->Update();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch (const itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
ParametersType finalParameters = registration->GetLastTransformParameters();
const double TranslationAlongX = finalParameters[0];
const double TranslationAlongY = finalParameters[1];
const double TranslationAlongZ = finalParameters[2];
const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
const double bestValue = optimizer->GetValue();
// Print out results
//
std::cout << "Result = " << std::endl;
std::cout << " Translation X = " << TranslationAlongX << std::endl;
std::cout << " Translation Y = " << TranslationAlongY << std::endl;
std::cout << " Translation Z = " << TranslationAlongZ << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
using ResampleFilterType =
auto finalTransform = TransformType::New();
finalTransform->SetParameters(finalParameters);
finalTransform->SetFixedParameters(transform->GetFixedParameters());
auto resample = ResampleFilterType::New();
resample->SetTransform(finalTransform);
resample->SetInput(movingImageReader->GetOutput());
const FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
PixelType backgroundGrayLevel = 100;
if (argc > 4)
{
backgroundGrayLevel = std::stoi(argv[4]);
}
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(backgroundGrayLevel);
using OutputPixelType = unsigned char;
using OutputImageType = itk::Image<OutputPixelType, Dimension>;
using CastFilterType =
auto writer = WriterType::New();
auto caster = CastFilterType::New();
writer->SetFileName(argv[3]);
caster->SetInput(resample->GetOutput());
writer->SetInput(caster->GetOutput());
writer->Update();
//
// Generate checkerboards before and after registration
//
using CheckerBoardFilterType = itk::CheckerBoardImageFilter<FixedImageType>;
auto checker = CheckerBoardFilterType::New();
checker->SetInput1(fixedImage);
checker->SetInput2(resample->GetOutput());
caster->SetInput(checker->GetOutput());
writer->SetInput(caster->GetOutput());
resample->SetDefaultPixelValue(0);
// Before registration
auto identityTransform = TransformType::New();
identityTransform->SetIdentity();
resample->SetTransform(identityTransform);
if (argc > 5)
{
writer->SetFileName(argv[5]);
writer->Update();
}
// After registration
resample->SetTransform(finalTransform);
if (argc > 6)
{
writer->SetFileName(argv[6]);
writer->Update();
}
return EXIT_SUCCESS;
}
Pixel-wise addition of two images.
Casts input pixels to output pixel type.
Combines two images in a checkerboard pattern.
Superclass for callback/observer methods.
Definition: itkCommand.h:46
virtual void Execute(Object *caller, const EventObject &event)=0
Abstraction of the Events used to communicating among filters and with GUIs.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
Templated n-dimensional image class.
Definition: itkImage.h:89
Linearly interpolate an image at specified positions.
Computes the mutual information between two images to be registered using the method of Mattes et al.
Base class for multi-resolution image registration methods.
Framework for creating images in a multi-resolution pyramid.
Base class for most ITK classes.
Definition: itkObject.h:62
Resample an image via a coordinate transform.
Translation transformation of a vector space (e.g. space coordinates)
static Pointer New()
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
class ITK_FORWARD_EXPORT Command
Definition: itkObject.h:42