ITK  6.0.0
Insight Toolkit
Examples/Segmentation/ConnectedThresholdImageFilter.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConnectedThresholdOutput1.png}
// ARGUMENTS: 60 116 150 180
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConnectedThresholdOutput2.png}
// ARGUMENTS: 81 112 210 250
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConnectedThresholdOutput3.png}
// ARGUMENTS: 107 69 180 210
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The following example illustrates the use of the
// \doxygen{ConnectedThresholdImageFilter}. This filter uses the flood fill
// iterator. Most of the algorithmic complexity of a region growing method
// comes from visiting neighboring pixels. The flood fill iterator assumes
// this responsibility and greatly simplifies the implementation of the
// region growing algorithm. Thus the algorithm is left to establish a
// criterion to decide whether a particular pixel should be included in
// the current region or not.
//
// \index{itk::FloodFillIterator!In Region Growing}
// \index{itk::ConnectedThresholdImageFilter}
// \index{itk::ConnectedThresholdImageFilter!header}
//
// The criterion used by the \code{ConnectedThresholdImageFilter} is based on
// an interval of intensity values provided by the user. Lower and upper
// threshold values should be provided. The region-growing algorithm includes
// those pixels whose intensities are inside the interval.
//
// \begin{equation}
// I(\mathbf{X}) \in [ \mbox{lower}, \mbox{upper} ]
// \end{equation}
//
// Let's look at the minimal code required to use this algorithm. First, the
// following header defining the \code{ConnectedThresholdImageFilter} class
// must be included.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
#include "itkImage.h"
// Software Guide : BeginLatex
//
// Noise present in the image can reduce the capacity of this filter to grow
// large regions. When faced with noisy images, it is usually convenient to
// pre-process the image by using an edge-preserving smoothing filter. Any of
// the filters discussed in Section~\ref{sec:EdgePreservingSmoothingFilters}
// could be used to this end. In this particular example we use the
// \doxygen{CurvatureFlowImageFilter}, so we need to include its header
// file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
int
main(int argc, char * argv[])
{
if (argc < 7)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr
<< " inputImage outputImage seedX seedY lowerThreshold upperThreshold"
<< std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We declare the image type based on a particular pixel type and
// dimension. In this case the \code{float} type is used for the pixels
// due to the requirements of the smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using InternalPixelType = float;
constexpr unsigned int Dimension = 2;
using InternalImageType = itk::Image<InternalPixelType, Dimension>;
// Software Guide : EndCodeSnippet
using OutputPixelType = unsigned char;
using OutputImageType = itk::Image<OutputPixelType, Dimension>;
using CastingFilterType =
auto caster = CastingFilterType::New();
// We instantiate reader and writer types
//
auto reader = ReaderType::New();
auto writer = WriterType::New();
reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);
// Software Guide : BeginLatex
//
//
// The smoothing filter is instantiated using the image type as
// a template parameter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using CurvatureFlowImageFilterType =
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then the filter is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now declare the type of the region growing filter. In this case it is
// the \code{ConnectedThresholdImageFilter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ConnectedFilterType =
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we construct one filter of this class using the \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto connectedThreshold = ConnectedFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now it is time to connect a simple, linear pipeline. A file reader is
// added at the beginning of the pipeline and a cast filter and writer
// are added at the end. The cast filter is required to convert
// \code{float} pixel types to integer types since only a few image file
// formats support \code{float} types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetInput(reader->GetOutput());
connectedThreshold->SetInput(smoothing->GetOutput());
caster->SetInput(connectedThreshold->GetOutput());
writer->SetInput(caster->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \code{CurvatureFlowImageFilter} requires a couple of parameters.
// The following are typical values for $2D$ images. However, these
// values may have to be adjusted depending on the amount of noise present
// in the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetNumberOfIterations(5);
smoothing->SetTimeStep(0.125);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now set the lower and upper threshold values. Any pixel whose value
// is between \code{lowerThreshold} and \code{upperThreshold} will be
// included in the region, and any pixel whose value is outside will be
// excluded. Setting these values too close together will be too
// restrictive for the region to grow; setting them too far apart will
// cause the region to engulf the image.
//
// \index{itk::ConnectedThresholdImageFilter!SetUpper()}
// \index{itk::ConnectedThresholdImageFilter!SetLower()}
//
// Software Guide : EndLatex
const InternalPixelType lowerThreshold = std::stod(argv[5]);
const InternalPixelType upperThreshold = std::stod(argv[6]);
// Software Guide : BeginCodeSnippet
connectedThreshold->SetLower(lowerThreshold);
connectedThreshold->SetUpper(upperThreshold);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of this filter is a binary image with zero-value pixels
// everywhere except on the extracted region. The intensity value set
// inside the region is selected with the method \code{SetReplaceValue()}.
//
// \index{itk::ConnectedThresholdImageFilter!SetReplaceValue()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
connectedThreshold->SetReplaceValue(255);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The algorithm must be initialized by setting a seed point (i.e., the
// \doxygen{Index} of the pixel from which the region will grow) using the
// \code{SetSeed()} method. It is convenient to initialize with a point in
// a \emph{typical} region of the anatomical structure to be segmented.
//
// \index{itk::ConnectedThresholdImageFilter!SetSeed()}
//
// Software Guide : EndLatex
index[0] = std::stoi(argv[3]);
index[1] = std::stoi(argv[4]);
// Software Guide : BeginCodeSnippet
connectedThreshold->SetSeed(index);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Invocation of the \code{Update()} method on the writer triggers
// execution of the pipeline. It is usually wise to put update calls in a
// \code{try/catch} block in case errors occur and exceptions are thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Let's run this example using as input the image
// \code{BrainProtonDensitySlice.png} provided in the directory
// \code{Examples/Data}. We can easily segment the major anatomical
// structures by providing seeds in the appropriate locations and defining
// values for the lower and upper thresholds.
// Figure~\ref{fig:ConnectedThresholdOutput} illustrates several examples
// of segmentation. The parameters used are presented in
// Table~\ref{tab:ConnectedThresholdOutput}.
//
// \begin{table}
// \begin{center}
// \begin{tabular}{|l|c|c|c|c|}
// \hline
// Structure & Seed Index & Lower & Upper & Output Image \\ \hline
// White matter & $(60,116)$ & 150 & 180 & Second from left in Figure
// \ref{fig:ConnectedThresholdOutput} \\ \hline Ventricle & $(81,112)$ &
// 210 & 250 & Third from left in Figure
// \ref{fig:ConnectedThresholdOutput} \\ \hline Gray matter & $(107,69)$ &
// 180 & 210 & Fourth from left in Figure
// \ref{fig:ConnectedThresholdOutput} \\ \hline \end{tabular} \end{center}
// \itkcaption[ConnectedThreshold example parameters]{Parameters used for
// segmenting some brain structures shown in
// Figure~\ref{fig:ConnectedThresholdOutput} with the filter
// \doxygen{ConnectedThresholdImageFilter}.\label{tab:ConnectedThresholdOutput}}
// \end{table}
//
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{BrainProtonDensitySlice}
// \includegraphics[width=0.24\textwidth]{ConnectedThresholdOutput1}
// \includegraphics[width=0.24\textwidth]{ConnectedThresholdOutput2}
// \includegraphics[width=0.24\textwidth]{ConnectedThresholdOutput3}
// \itkcaption[ConnectedThreshold segmentation results]{Segmentation results
// for the ConnectedThreshold filter for various seed points.}
// \label{fig:ConnectedThresholdOutput}
// \end{figure}
//
// Notice that the gray matter is not being completely segmented. This
// illustrates the vulnerability of the region-growing methods when the
// anatomical structures to be segmented do not have a homogeneous
// statistical distribution over the image space. You may want to
// experiment with different values of the lower and upper thresholds to
// verify how the accepted region will extend.
//
// Another option for segmenting regions is to take advantage of the
// functionality provided by the \code{ConnectedThresholdImageFilter} for
// managing multiple seeds. The seeds can be passed one-by-one to the
// filter using the \code{AddSeed()} method. You could imagine a user
// interface in which an operator clicks on multiple points of the object
// to be segmented and each selected point is passed as a seed to this
// filter.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
Casts input pixels to output pixel type.
Label pixels that are connected to a seed and lie within a range of values.
Denoise an image using curvature driven flow.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
Templated n-dimensional image class.
Definition: itkImage.h:89
static Pointer New()