ITK  6.0.0
Insight Toolkit
Examples/Statistics/BayesianClassifierInitializer.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
//
// This is an example of the itk::BayesianClassifierInitializationImageFilter.
// The example's goal is to serve as an initializer for the
// BayesianClassifier.cxx example also found in this directory.
//
// This example takes an input image (to be classified) and generates
// membership images. The membership images determine the degree to which each
// pixel belongs to a class.
//
// The membership image generated by the filter is an
// itk::VectorImage, (with pixels organized as follows: For a 2D image,
// its essentially a 3D array on file with DataType[y][x][c] where c is the
// number of classes and DataType is the template parameter of the filter
// (defaults to float). For a 3D image, it will be organized as
// Datatype[z][y][x][c])
//
// The example also optionally takes in two more arguments, as a convenience
// to the user. These arguments extract the specified component 'c' from the
// membership image and rescale, so the user can fire up a typical image
// viewer and see the relative pixel memberships to class 'c'.
//
// Example args:
// BrainProtonDensitySlice.png Memberships.mhd 4 2 Class2.png
//
// Here Memberships.mhd will be a 2x2x4 image containing pixel memberships
// Class2.png shows pixel memberships to the third class, (rescaled for
// display)
//
// Notes:
// The default behaviour of the filter is to generate memberships by
// centering
// gaussian density functions around K-means of the pixel intensities in the
// image. The filter allows you to specify your own membership functions as
// well.
//
#include "itkImage.h"
int
main(int argc, char * argv[])
{
constexpr unsigned int Dimension = 2;
if (argc < 4)
{
std::cerr
<< "Usage arguments: InputImage MembershipImage numberOfClasses "
"[componentToExtract ExtractedImage]"
<< std::endl;
std::cerr
<< " The MembershipImage image written is a VectorImage, ( an image "
"with multiple components ) ";
std::cerr << "Given that most viewers can't see vector images, we will "
"optionally "
"extract a component and ";
std::cerr << "write it out as a scalar image as well." << std::endl;
return EXIT_FAILURE;
}
using BayesianInitializerType =
auto bayesianInitializer = BayesianInitializerType::New();
using ReaderType = itk::ImageFileReader<ImageType>;
auto reader = ReaderType::New();
reader->SetFileName(argv[1]);
try
{
reader->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
bayesianInitializer->SetInput(reader->GetOutput());
bayesianInitializer->SetNumberOfClasses(std::stoi(argv[3]));
// TODO add test where we specify membership functions
using WriterType =
auto writer = WriterType::New();
writer->SetInput(bayesianInitializer->GetOutput());
writer->SetFileName(argv[2]);
try
{
bayesianInitializer->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
if (argv[4] && argv[5])
{
using MembershipImageType = BayesianInitializerType::OutputImageType;
using ExtractedComponentImageType =
auto extractedComponentImage = ExtractedComponentImageType::New();
extractedComponentImage->CopyInformation(
bayesianInitializer->GetOutput());
extractedComponentImage->SetBufferedRegion(
bayesianInitializer->GetOutput()->GetBufferedRegion());
extractedComponentImage->SetRequestedRegion(
bayesianInitializer->GetOutput()->GetRequestedRegion());
extractedComponentImage->Allocate();
using ConstIteratorType =
using IteratorType =
ConstIteratorType cit(
bayesianInitializer->GetOutput(),
bayesianInitializer->GetOutput()->GetBufferedRegion());
IteratorType it(extractedComponentImage,
extractedComponentImage->GetLargestPossibleRegion());
const unsigned int componentToExtract = std::stoi(argv[4]);
cit.GoToBegin();
it.GoToBegin();
while (!cit.IsAtEnd())
{
it.Set(cit.Get()[componentToExtract]);
++it;
++cit;
}
// Write out the rescaled extracted component
using OutputImageType = itk::Image<unsigned char, Dimension>;
using RescalerType =
itk::RescaleIntensityImageFilter<ExtractedComponentImageType,
OutputImageType>;
auto rescaler = RescalerType::New();
rescaler->SetInput(extractedComponentImage);
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
using ExtractedComponentWriterType =
auto rescaledImageWriter = ExtractedComponentWriterType::New();
rescaledImageWriter->SetInput(rescaler->GetOutput());
rescaledImageWriter->SetFileName(argv[5]);
rescaledImageWriter->Update();
}
return EXIT_SUCCESS;
}
This filter is intended to be used as a helper class to initialize the BayesianClassifierImageFilter.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
A multi-dimensional iterator templated over image type that walks a region of pixels.
A multi-dimensional iterator templated over image type that walks a region of pixels.
Templated n-dimensional image class.
Definition: itkImage.h:89
Applies a linear transformation to the intensity levels of the input Image.
static Pointer New()