int
main()
{
sample->SetMeasurementVectorSize(1);
normalGenerator->Initialize(101);
MeasurementVectorType mv;
double mean = 100;
double standardDeviation = 30;
for (unsigned int i = 0; i < 100; ++i)
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
sample->PushBack(mv);
}
normalGenerator->Initialize(3024);
mean = 200;
standardDeviation = 30;
for (unsigned int i = 0; i < 100; ++i)
{
mv[0] = (normalGenerator->GetVariate() * standardDeviation) + mean;
sample->PushBack(mv);
}
using TreeGeneratorType =
treeGenerator->SetSample(sample);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();
using TreeType = TreeGeneratorType::KdTreeType;
EstimatorType::ParametersType initialMeans(2);
initialMeans[0] = 0.0;
initialMeans[1] = 0.0;
estimator->SetParameters(initialMeans);
estimator->SetKdTree(treeGenerator->GetOutput());
estimator->SetMaximumIteration(200);
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();
EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();
for (unsigned int i = 0; i < 2; ++i)
{
std::cout << "cluster[" << i << "] " << std::endl;
std::cout << " estimated mean : " << estimatedMeans[i] << std::endl;
}
using MembershipFunctionType =
MeasurementVectorType>;
classifier->SetDecisionRule(decisionRule);
classifier->SetInput(sample);
classifier->SetNumberOfClasses(2);
using ClassLabelVectorObjectType =
ClassifierType::ClassLabelVectorObjectType;
using ClassLabelVectorType = ClassifierType::ClassLabelVectorType;
using ClassLabelType = ClassifierType::ClassLabelType;
ClassLabelVectorType & classLabelsVector = classLabelsObject->Get();
constexpr ClassLabelType class1 = 200;
classLabelsVector.push_back(class1);
constexpr ClassLabelType class2 = 100;
classLabelsVector.push_back(class2);
classifier->SetClassLabels(classLabelsObject);
using MembershipFunctionVectorObjectType =
ClassifierType::MembershipFunctionVectorObjectType;
using MembershipFunctionVectorType =
ClassifierType::MembershipFunctionVectorType;
auto membershipFunctionVectorObject =
MembershipFunctionVectorType & membershipFunctionVector =
membershipFunctionVectorObject->Get();
int index = 0;
for (unsigned int i = 0; i < 2; ++i)
{
MembershipFunctionType::CentroidType centroid(
sample->GetMeasurementVectorSize());
for (unsigned int j = 0; j < sample->GetMeasurementVectorSize(); ++j)
{
centroid[j] = estimatedMeans[index++];
}
membershipFunction->SetCentroid(centroid);
membershipFunctionVector.emplace_back(membershipFunction);
}
classifier->SetMembershipFunctions(membershipFunctionVectorObject);
classifier->Update();
const ClassifierType::MembershipSampleType * membershipSample =
classifier->GetOutput();
ClassifierType::MembershipSampleType::ConstIterator iter =
membershipSample->Begin();
while (iter != membershipSample->End())
{
std::cout << "measurement vector = " << iter.GetMeasurementVector()
<< " class label = " << iter.GetClassLabel() << std::endl;
++iter;
}
return EXIT_SUCCESS;
}
DistanceToCentroidMembershipFunction models class membership using a distance metric.
fast k-means algorithm implementation using k-d tree structure
This class is the native implementation of the a Sample with an STL container.
A decision rule that returns the class label with the smallest discriminant score.
Normal random variate generator.
Sample classification class.
This class generates a KdTree object with centroid information.