ITK  6.0.0
Insight Toolkit
Examples/Statistics/ScalarImageMarkovRandomField1.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1Slice.png}
// INPUTS: {BrainT1Slice_labelled.png}
// OUTPUTS: {ScalarImageMarkovRandomField1Output.png}
// ARGUMENTS: 50 3 3 14.8 91.6 134.9
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example shows how to use the Markov Random Field approach for
// classifying the pixel of a scalar image.
//
// The \subdoxygen{Statistics}{MRFImageFilter} is used for refining an
// initial classification by introducing the spatial coherence of the labels.
// The user should provide two images as input. The first image is the one to
// be classified while the second image is an image of labels representing an
// initial classification.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The following headers are related to reading input images, writing the
// output image, and making the necessary conversions between scalar and
// vector images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImage.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following headers are related to the statistical classification
// classes.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
int
main(int argc, char * argv[])
{
if (argc < 7)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0];
std::cerr << " inputScalarImage inputLabeledImage";
std::cerr << " outputLabeledImage numberOfIterations";
std::cerr << " smoothingFactor numberOfClasses";
std::cerr << " mean1 mean2 ... meanN " << std::endl;
return EXIT_FAILURE;
}
const char * inputImageFileName = argv[1];
const char * inputLabelImageFileName = argv[2];
const char * outputImageFileName = argv[3];
const unsigned int numberOfIterations = std::stoi(argv[4]);
const double smoothingFactor = std::stod(argv[5]);
const unsigned int numberOfClasses = std::stoi(argv[6]);
constexpr unsigned int numberOfArgumentsBeforeMeans = 7;
if (static_cast<unsigned int>(argc) <
numberOfClasses + numberOfArgumentsBeforeMeans)
{
std::cerr << "Error: " << std::endl;
std::cerr << numberOfClasses << " classes have been specified ";
std::cerr << "but not enough means have been provided in the command ";
std::cerr << "line arguments " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// First we define the pixel type and dimension of the image that we intend
// to classify. With this image type we can also declare the
// \doxygen{ImageFileReader} needed for reading the input image, create one
// and set its input filename. In this particular case we choose to use
// \code{short} as pixel type, which is typical for MicroMRI and CT
// data sets.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using PixelType = short;
constexpr unsigned int Dimension = 2;
using ReaderType = itk::ImageFileReader<ImageType>;
auto reader = ReaderType::New();
reader->SetFileName(inputImageFileName);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As a second step we define the pixel type and dimension of the image of
// labels that provides the initial classification of the pixels from the
// first image. This initial labeled image can be the output of a K-Means
// method like the one illustrated in section \ref{sec:KMeansClassifier}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using LabelPixelType = unsigned char;
using LabelImageType = itk::Image<LabelPixelType, Dimension>;
using LabelReaderType = itk::ImageFileReader<LabelImageType>;
auto labelReader = LabelReaderType::New();
labelReader->SetFileName(inputLabelImageFileName);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the Markov Random Field algorithm is defined in general for images
// whose pixels have multiple components, that is, images of vector type, we
// must adapt our scalar image in order to satisfy the interface expected by
// the \code{MRFImageFilter}. We do this by using the
// \doxygen{ComposeImageFilter}. With this filter we will present our
// scalar image as a vector image whose vector pixels contain a single
// component.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ArrayPixelType = itk::FixedArray<LabelPixelType, 1>;
using ArrayImageType = itk::Image<ArrayPixelType, Dimension>;
using ScalarToArrayFilterType =
auto scalarToArrayFilter = ScalarToArrayFilterType::New();
scalarToArrayFilter->SetInput(reader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// With the input image type \code{ImageType} and labeled image type
// \code{LabelImageType} we instantiate the type of the
// \doxygen{MRFImageFilter} that will apply the Markov Random Field
// algorithm in order to refine the pixel classification.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto mrfFilter = MRFFilterType::New();
mrfFilter->SetInput(scalarToArrayFilter->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set now some of the parameters for the MRF filter. In particular, the
// number of classes to be used during the classification, the maximum
// number of iterations to be run in this filter and the error tolerance
// that will be used as a criterion for convergence.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetNumberOfClasses(numberOfClasses);
mrfFilter->SetMaximumNumberOfIterations(numberOfIterations);
mrfFilter->SetErrorTolerance(1e-7);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The smoothing factor represents the tradeoff between fidelity to the
// observed image and the smoothness of the segmented image. Typical
// smoothing factors have values between 1~5. This factor will multiply the
// weights that define the influence of neighbors on the classification of a
// given pixel. The higher the value, the more uniform will be the regions
// resulting from the classification refinement.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetSmoothingFactor(smoothingFactor);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Given that the MRF filter need to continually relabel the pixels, it
// needs access to a set of membership functions that will measure to what
// degree every pixel belongs to a particular class. The classification is
// performed by the \doxygen{ImageClassifierBase} class, that is
// instantiated using the type of the input vector image and the type of the
// labeled image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using SupervisedClassifierType =
auto classifier = SupervisedClassifierType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The classifier need a decision rule to be set by the user. Note that we
// must use \code{GetPointer()} in the call of the \code{SetDecisionRule()}
// method because we are passing a SmartPointer, and smart pointer cannot
// perform polymorphism, we must then extract the raw pointer that is
// associated to the smart pointer. This extraction is done with the
// GetPointer() method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using DecisionRuleType = itk::Statistics::MinimumDecisionRule;
auto classifierDecisionRule = DecisionRuleType::New();
classifier->SetDecisionRule(classifierDecisionRule);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now instantiate the membership functions. In this case we use the
// \subdoxygen{Statistics}{DistanceToCentroidMembershipFunction} class
// templated over the pixel type of the vector image, that in our example
// happens to be a vector of dimension 1.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using MembershipFunctionType =
using MembershipFunctionPointer = MembershipFunctionType::Pointer;
double meanDistance = 0;
MembershipFunctionType::CentroidType centroid(1);
for (unsigned int i = 0; i < numberOfClasses; ++i)
{
const MembershipFunctionPointer membershipFunction =
centroid[0] = std::stod(argv[i + numberOfArgumentsBeforeMeans]);
membershipFunction->SetCentroid(centroid);
classifier->AddMembershipFunction(membershipFunction);
meanDistance += static_cast<double>(centroid[0]);
}
if (numberOfClasses > 0)
{
meanDistance /= numberOfClasses;
}
else
{
std::cerr << "ERROR: numberOfClasses is 0" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set the Smoothing factor. This factor will multiply the weights that
// define the influence of neighbors on the classification of a given pixel.
// The higher the value, the more uniform will be the regions resulting from
// the classification refinement.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetSmoothingFactor(smoothingFactor);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// and we set the neighborhood radius that will define the size of the
// clique to be used in the computation of the neighbors' influence in the
// classification of any given pixel. Note that despite the fact that we
// call this a radius, it is actually the half size of an hypercube. That
// is, the actual region of influence will not be circular but rather an
// n-dimensional box. For example, a neighborhood radius of 2 in a 3D image
// will result in a clique of size 5x5x5 pixels, and a radius of 1 will
// result in a clique of size 3x3x3 pixels.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetNeighborhoodRadius(1);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We should now set the weights used for the neighbors. This is done by
// passing an array of values that contains the linear sequence of weights
// for the neighbors. For example, in a neighborhood of size 3x3x3, we
// should provide a linear array of 9 weight values. The values are packaged
// in a \code{std::vector} and are supposed to be \code{double}. The
// following lines illustrate a typical set of values for a 3x3x3
// neighborhood. The array is arranged and then passed to the filter by
// using the method \code{SetMRFNeighborhoodWeight()}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::vector<double> weights;
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(0.0); // This is the central pixel
weights.push_back(2.0);
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(1.5);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now scale weights so that the smoothing function and the image
// fidelity functions have comparable value. This is necessary since the
// label image and the input image can have different dynamic ranges. The
// fidelity function is usually computed using a distance function, such as
// the \doxygen{DistanceToCentroidMembershipFunction} or one of the other
// membership functions. They tend to have values in the order of the means
// specified.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
double totalWeight = 0;
for (const double weight : weights)
{
totalWeight += weight;
}
for (double & weight : weights)
{
weight = static_cast<double>(weight * meanDistance / (2 * totalWeight));
}
mrfFilter->SetMRFNeighborhoodWeight(weights);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the classifier class is connected to the Markov Random Fields
// filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetClassifier(classifier);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output image produced by the \doxygen{MRFImageFilter} has the same
// pixel type as the labeled input image. In the following lines we use the
// \code{OutputImageType} in order to instantiate the type of a
// \doxygen{ImageFileWriter}. Then create one, and connect it to the output
// of the classification filter after passing it through an intensity
// rescaler to rescale it to an 8 bit dynamic range
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using OutputImageType = MRFFilterType::OutputImageType;
// Software Guide : EndCodeSnippet
// Rescale outputs to the dynamic range of the display
using RescaledOutputImageType = itk::Image<unsigned char, Dimension>;
using RescalerType =
RescaledOutputImageType>;
auto intensityRescaler = RescalerType::New();
intensityRescaler->SetOutputMinimum(0);
intensityRescaler->SetOutputMaximum(255);
intensityRescaler->SetInput(mrfFilter->GetOutput());
// Software Guide : BeginCodeSnippet
auto writer = WriterType::New();
writer->SetInput(intensityRescaler->GetOutput());
writer->SetFileName(outputImageFileName);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We are now ready for triggering the execution of the pipeline. This is
// done by simply invoking the \code{Update()} method in the writer. This
// call will propagate the update request to the reader and then to the MRF
// filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Problem encountered while writing ";
std::cerr << " image file : " << argv[2] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
std::cout << "Number of Iterations : ";
std::cout << mrfFilter->GetNumberOfIterations() << std::endl;
std::cout << "Stop condition: " << std::endl;
std::cout << " (1) Maximum number of iterations " << std::endl;
std::cout << " (2) Error tolerance: " << std::endl;
std::cout << mrfFilter->GetStopCondition() << std::endl;
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{ScalarImageMarkovRandomField1Output}
// \itkcaption[Output of the ScalarImageMarkovRandomField]{Effect of the
// MRF filter on a T1 slice of the brain.}
// \label{fig:ScalarImageMarkovRandomFieldInputOutput}
// \end{figure}
//
// Figure \ref{fig:ScalarImageMarkovRandomFieldInputOutput}
// illustrates the effect of this filter with three classes.
// In this example the filter was run with a smoothing factor of 3.
// The labeled image was produced by ScalarImageKmeansClassifier.cxx
// and the means were estimated by ScalarImageKmeansModelEstimator.cxx.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
ComposeImageFilter combine several scalar images into a multicomponent image.
Standard exception handling object.
Simulate a standard C array with copy semantics.
Definition: itkFixedArray.h:54
Base class for the ImageClassifierBase object.
Data source that reads image data from a single file.
Writes image data to a single file.
Templated n-dimensional image class.
Definition: itkImage.h:89
Implementation of a labeler object that uses Markov Random Fields to classify pixels in an image data...
Applies a linear transformation to the intensity levels of the input Image.
DistanceToCentroidMembershipFunction models class membership using a distance metric.
A decision rule that returns the class label with the smallest discriminant score.
static Pointer New()
SmartPointer< Self > Pointer
static constexpr double e
Definition: itkMath.h:56