ITK
6.0.0
Insight Toolkit
|
#include <itkGradientDescentLineSearchOptimizerv4.h>
Gradient descent optimizer with a golden section line search.
GradientDescentLineSearchOptimizer implements a simple gradient descent optimizer that is followed by a line search to find the best value for the learning rate. At each iteration the current position is updated according to
\[ p_{n+1} = p_n + \mbox{learningRateByGoldenSectionLineSearch} \, \frac{\partial f(p_n) }{\partial p_n} \]
Options are identical to the superclass's except for:
options Epsilon, LowerLimit and UpperLimit that will guide a golden section line search to find the optimal gradient update within the range :
[ learningRate * LowerLimit , learningRate * UpperLimit ]
where Epsilon sets the resolution of the search. Smaller values lead to additional computation time but better localization of the minimum.
By default, this optimizer will return the best value and associated parameters that were calculated during the optimization. See SetReturnBestParametersAndValue().
Definition at line 60 of file itkGradientDescentLineSearchOptimizerv4.h.
Public Member Functions | |
const char * | GetNameOfClass () const override |
virtual void | SetEpsilon (TInternalComputationValueType _arg) |
virtual TInternalComputationValueType | GetEpsilon () |
virtual void | SetLowerLimit (TInternalComputationValueType _arg) |
virtual TInternalComputationValueType | GetLowerLimit () |
virtual void | SetUpperLimit (TInternalComputationValueType _arg) |
virtual TInternalComputationValueType | GetUpperLimit () |
virtual void | SetMaximumLineSearchIterations (unsigned int _arg) |
virtual unsigned int | GetMaximumLineSearchIterations () |
Public Member Functions inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType > | |
virtual void | EstimateLearningRate () |
virtual const TInternalComputationValueType & | GetConvergenceValue () const |
const char * | GetNameOfClass () const override |
void | ResumeOptimization () override |
virtual void | SetConvergenceWindowSize (SizeValueType _arg) |
virtual void | SetMinimumConvergenceValue (TInternalComputationValueType _arg) |
void | StartOptimization (bool doOnlyInitialization=false) override |
void | StopOptimization () override |
virtual void | SetLearningRate (TInternalComputationValueType _arg) |
virtual const TInternalComputationValueType & | GetLearningRate () const |
virtual void | SetMaximumStepSizeInPhysicalUnits (TInternalComputationValueType _arg) |
virtual const TInternalComputationValueType & | GetMaximumStepSizeInPhysicalUnits () const |
virtual void | SetDoEstimateLearningRateAtEachIteration (bool _arg) |
virtual const bool & | GetDoEstimateLearningRateAtEachIteration () const |
virtual void | DoEstimateLearningRateAtEachIterationOn () |
virtual void | SetDoEstimateLearningRateOnce (bool _arg) |
virtual const bool & | GetDoEstimateLearningRateOnce () const |
virtual void | DoEstimateLearningRateOnceOn () |
virtual void | SetReturnBestParametersAndValue (bool _arg) |
virtual const bool & | GetReturnBestParametersAndValue () const |
virtual void | ReturnBestParametersAndValueOn () |
Public Member Functions inherited from itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType > | |
virtual const DerivativeType & | GetGradient () const |
const char * | GetNameOfClass () const override |
virtual const StopConditionObjectToObjectOptimizerEnum & | GetStopCondition () const |
StopConditionReturnStringType | GetStopConditionDescription () const override |
virtual void | ModifyGradientByLearningRateOverSubRange (const IndexRangeType &subrange)=0 |
virtual void | ModifyGradientByScalesOverSubRange (const IndexRangeType &subrange)=0 |
virtual void | ResumeOptimization ()=0 |
void | StartOptimization (bool doOnlyInitialization=false) override |
virtual void | StopOptimization () |
virtual void | ModifyGradientByScales () |
virtual void | ModifyGradientByLearningRate () |
Public Member Functions inherited from itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType > | |
virtual bool | CanUseScales () const |
virtual SizeValueType | GetCurrentIteration () const |
virtual const MeasureType & | GetCurrentMetricValue () const |
virtual const ParametersType & | GetCurrentPosition () const |
const char * | GetNameOfClass () const override |
virtual SizeValueType | GetNumberOfIterations () const |
virtual const ThreadIdType & | GetNumberOfWorkUnits () const |
virtual const ScalesType & | GetScales () const |
virtual const bool & | GetScalesAreIdentity () const |
bool | GetScalesInitialized () const |
virtual StopConditionReturnStringType | GetStopConditionDescription () const=0 |
virtual const MeasureType & | GetValue () const |
virtual const ScalesType & | GetWeights () const |
virtual const bool & | GetWeightsAreIdentity () const |
virtual void | SetNumberOfIterations (SizeValueType _arg) |
virtual void | SetNumberOfWorkUnits (ThreadIdType number) |
virtual void | SetScalesEstimator (ScalesEstimatorType *_arg) |
virtual void | SetWeights (ScalesType _arg) |
virtual void | StartOptimization (bool doOnlyInitialization=false) |
virtual void | SetMetric (MetricType *_arg) |
virtual MetricType * | GetModifiableMetric () |
virtual void | SetScales (const ScalesType &scales) |
virtual void | SetDoEstimateScales (bool _arg) |
virtual const bool & | GetDoEstimateScales () const |
virtual void | DoEstimateScalesOn () |
Public Member Functions inherited from itk::Object | |
unsigned long | AddObserver (const EventObject &event, Command *cmd) const |
unsigned long | AddObserver (const EventObject &event, std::function< void(const EventObject &)> function) const |
LightObject::Pointer | CreateAnother () const override |
virtual void | DebugOff () const |
virtual void | DebugOn () const |
Command * | GetCommand (unsigned long tag) |
bool | GetDebug () const |
MetaDataDictionary & | GetMetaDataDictionary () |
const MetaDataDictionary & | GetMetaDataDictionary () const |
virtual ModifiedTimeType | GetMTime () const |
const char * | GetNameOfClass () const override |
virtual const TimeStamp & | GetTimeStamp () const |
bool | HasObserver (const EventObject &event) const |
void | InvokeEvent (const EventObject &) |
void | InvokeEvent (const EventObject &) const |
virtual void | Modified () const |
void | Register () const override |
void | RemoveAllObservers () |
void | RemoveObserver (unsigned long tag) const |
void | SetDebug (bool debugFlag) const |
void | SetReferenceCount (int) override |
void | UnRegister () const noexcept override |
void | SetMetaDataDictionary (const MetaDataDictionary &rhs) |
void | SetMetaDataDictionary (MetaDataDictionary &&rrhs) |
virtual void | SetObjectName (std::string _arg) |
virtual const std::string & | GetObjectName () const |
Public Member Functions inherited from itk::LightObject | |
Pointer | Clone () const |
virtual Pointer | CreateAnother () const |
virtual void | Delete () |
virtual const char * | GetNameOfClass () const |
virtual int | GetReferenceCount () const |
void | Print (std::ostream &os, Indent indent=0) const |
virtual void | Register () const |
virtual void | SetReferenceCount (int) |
virtual void | UnRegister () const noexcept |
Static Public Member Functions | |
static Pointer | New () |
Static Public Member Functions inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType > | |
static Pointer | New () |
Static Public Member Functions inherited from itk::Object | |
static bool | GetGlobalWarningDisplay () |
static void | GlobalWarningDisplayOff () |
static void | GlobalWarningDisplayOn () |
static Pointer | New () |
static void | SetGlobalWarningDisplay (bool val) |
Static Public Member Functions inherited from itk::LightObject | |
static void | BreakOnError () |
static Pointer | New () |
Protected Member Functions | |
void | AdvanceOneStep () override |
GradientDescentLineSearchOptimizerv4Template () | |
void | PrintSelf (std::ostream &os, Indent indent) const override |
~GradientDescentLineSearchOptimizerv4Template () override=default | |
TInternalComputationValueType | GoldenSectionSearch (TInternalComputationValueType a, TInternalComputationValueType b, TInternalComputationValueType c, TInternalComputationValueType metricb=NumericTraits< TInternalComputationValueType >::max()) |
Protected Member Functions inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType > | |
virtual void | AdvanceOneStep () |
GradientDescentOptimizerv4Template () | |
void | ModifyGradientByLearningRateOverSubRange (const IndexRangeType &subrange) override |
void | ModifyGradientByScalesOverSubRange (const IndexRangeType &subrange) override |
void | PrintSelf (std::ostream &os, Indent indent) const override |
~GradientDescentOptimizerv4Template () override=default | |
Protected Member Functions inherited from itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType > | |
void | PrintSelf (std::ostream &os, Indent indent) const override |
GradientDescentOptimizerBasev4Template () | |
~GradientDescentOptimizerBasev4Template () override=default | |
Protected Member Functions inherited from itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType > | |
void | PrintSelf (std::ostream &os, Indent indent) const override |
ObjectToObjectOptimizerBaseTemplate () | |
~ObjectToObjectOptimizerBaseTemplate () override | |
Protected Member Functions inherited from itk::Object | |
Object () | |
bool | PrintObservers (std::ostream &os, Indent indent) const |
void | PrintSelf (std::ostream &os, Indent indent) const override |
virtual void | SetTimeStamp (const TimeStamp &timeStamp) |
~Object () override | |
Protected Member Functions inherited from itk::LightObject | |
virtual LightObject::Pointer | InternalClone () const |
LightObject () | |
virtual void | PrintHeader (std::ostream &os, Indent indent) const |
virtual void | PrintSelf (std::ostream &os, Indent indent) const |
virtual void | PrintTrailer (std::ostream &os, Indent indent) const |
virtual | ~LightObject () |
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::ConstPointer = SmartPointer<const Self> |
Definition at line 71 of file itkGradientDescentLineSearchOptimizerv4.h.
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::ConvergenceMonitoringType = itk::Function::WindowConvergenceMonitoringFunction<TInternalComputationValueType> |
Type for the convergence checker
Definition at line 90 of file itkGradientDescentLineSearchOptimizerv4.h.
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::InternalComputationValueType = TInternalComputationValueType |
It should be possible to derive the internal computation type from the class object.
Definition at line 80 of file itkGradientDescentLineSearchOptimizerv4.h.
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::Pointer = SmartPointer<Self> |
Definition at line 70 of file itkGradientDescentLineSearchOptimizerv4.h.
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::Self = GradientDescentLineSearchOptimizerv4Template |
Standard class type aliases.
Definition at line 68 of file itkGradientDescentLineSearchOptimizerv4.h.
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::Superclass = GradientDescentOptimizerv4Template<TInternalComputationValueType> |
Definition at line 69 of file itkGradientDescentLineSearchOptimizerv4.h.
|
protected |
Default constructor
|
overrideprotecteddefault |
Destructor
|
overrideprotectedvirtual |
Advance one Step following the gradient direction. Includes transform update.
Reimplemented from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >.
|
virtual |
The epsilon determines the accuracy of the line search i.e. the energy alteration that is considered convergent.
|
virtual |
The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.
|
virtual |
The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.
|
overridevirtual |
Reimplemented from itk::Object.
|
virtual |
The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.
|
protected |
Search the golden section.
\p a and \p c are the current bounds; the minimum is between them. \p b is a center point. \c f(x) is some mathematical function elsewhere defined. \p a corresponds to \c x1; \p b corresponds to \c x2; \p c corresponds to \c x3. \c x corresponds to \c x4.
|
static |
New macro for creation of through a Smart Pointer
|
overrideprotectedvirtual |
Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.
Reimplemented from itk::Object.
|
virtual |
The epsilon determines the accuracy of the line search i.e. the energy alteration that is considered convergent.
|
virtual |
The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.
|
virtual |
The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.
|
virtual |
The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.
|
protected |
Definition at line 150 of file itkGradientDescentLineSearchOptimizerv4.h.
|
protected |
Counts the recursion depth for the golden section search
Definition at line 156 of file itkGradientDescentLineSearchOptimizerv4.h.
|
protected |
Definition at line 146 of file itkGradientDescentLineSearchOptimizerv4.h.
|
protected |
Controls the maximum recursion depth for the golden section search
Definition at line 153 of file itkGradientDescentLineSearchOptimizerv4.h.
|
protected |
Definition at line 148 of file itkGradientDescentLineSearchOptimizerv4.h.
|
protected |
Definition at line 149 of file itkGradientDescentLineSearchOptimizerv4.h.
|
protected |
Definition at line 147 of file itkGradientDescentLineSearchOptimizerv4.h.