ITK 6.0.0
Insight Toolkit
 
Loading...
Searching...
No Matches
itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType > Class Template Reference

#include <itkRegularStepGradientDescentOptimizerv4.h>

Detailed Description

template<typename TInternalComputationValueType = double>
class itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >

Regular Step Gradient descent optimizer.

This optimizer is a variant of gradient descent that attempts to prevent it from taking steps that are too large. At each iteration, this optimizer will take a step along the direction of the metric derivative. Each time the direction of the derivative abruptly changes, the optimizer assumes that a local extrema has been passed and reacts by reducing the step length by a relaxation factor that is set to 0.5 by default. The default value for the initial step length is 1, and this value can only be changed manually via SetLearningRate() since this optimizer does not use the ScaleEstimator to automatically estimate the learning rate. Also note that unlike the previous version of RegularStepGradientDescentOptimizer, ITKv4 does not have a "maximize/minimize" option to modify the effect of the metric derivative. The assigned metric is assumed to return a parameter derivative result that "improves" the optimization.

Examples
Examples/RegistrationITKv4/ImageRegistration1.cxx, Examples/RegistrationITKv4/ImageRegistration12.cxx, Examples/RegistrationITKv4/ImageRegistration13.cxx, Examples/RegistrationITKv4/ImageRegistration3.cxx, Examples/RegistrationITKv4/ImageRegistration4.cxx, Examples/RegistrationITKv4/ImageRegistration5.cxx, Examples/RegistrationITKv4/ImageRegistration6.cxx, Examples/RegistrationITKv4/ImageRegistration7.cxx, Examples/RegistrationITKv4/ImageRegistration8.cxx, Examples/RegistrationITKv4/ImageRegistration9.cxx, Examples/RegistrationITKv4/MultiResImageRegistration1.cxx, Examples/RegistrationITKv4/MultiStageImageRegistration1.cxx, and Examples/RegistrationITKv4/MultiStageImageRegistration2.cxx.

Definition at line 47 of file itkRegularStepGradientDescentOptimizerv4.h.

+ Inheritance diagram for itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >:
+ Collaboration diagram for itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >:

Public Types

using CompensatedSummationType = CompensatedSummation<InternalComputationValueType>
 
using ConstPointer = SmartPointer<const Self>
 
using DerivativeType
 
using IndexRangeType
 
using InternalComputationValueType = TInternalComputationValueType
 
using MeasureType
 
using ParametersType
 
using Pointer = SmartPointer<Self>
 
using ScalesType
 
using Self = RegularStepGradientDescentOptimizerv4
 
using Superclass = GradientDescentOptimizerv4Template<TInternalComputationValueType>
 
- Public Types inherited from itk::GradientDescentOptimizerv4Template< double >
using ConstPointer
 
typedef typename MetricType::DerivativeType DerivativeType
 
using DerivativeType
 
typedef ThreadedIndexedContainerPartitioner::IndexRangeType IndexRangeType
 
using IndexRangeType
 
using InternalComputationValueType
 
typedef typename MetricType::MeasureType MeasureType
 
using MeasureType
 
typedef OptimizerParameters< double > ParametersType
 
using ParametersType
 
using Pointer
 
typedef OptimizerParameters< double > ScalesType
 
using ScalesType
 
using Self
 
using Superclass
 
- Public Types inherited from itk::GradientDescentOptimizerBasev4Template< double >
using ConstPointer
 
using ConvergenceMonitoringType
 
typedef typename MetricType::DerivativeType DerivativeType
 
using DerivativeType
 
using IndexRangeType
 
using InternalComputationValueType
 
typedef typename MetricType::MeasureType MeasureType
 
using MeasureType
 
typedef ObjectToObjectMetricBaseTemplate< double > MetricType
 
using MetricType
 
using MetricTypePointer
 
typedef OptimizerParameters< double > ParametersType
 
using ParametersType
 
using Pointer
 
typedef OptimizerParameters< double > ScalesType
 
using ScalesType
 
using Self
 
typedef std::ostringstream StopConditionDescriptionType
 
using StopConditionDescriptionType
 
typedef std::string StopConditionReturnStringType
 
using StopConditionReturnStringType
 
using Superclass
 
- Public Types inherited from itk::ObjectToObjectOptimizerBaseTemplate< double >
using ConstPointer
 
using DerivativeType
 
using MeasureType
 
using MetricType
 
using MetricTypePointer
 
using NumberOfParametersType
 
using ParametersType
 
using Pointer
 
using ScalesEstimatorType
 
using ScalesType
 
using Self
 
using StopConditionDescriptionType
 
using StopConditionReturnStringType
 
using Superclass
 
- Public Types inherited from itk::Object
using ConstPointer = SmartPointer<const Self>
 
using Pointer = SmartPointer<Self>
 
using Self = Object
 
using Superclass = LightObject
 
- Public Types inherited from itk::LightObject
using ConstPointer = SmartPointer<const Self>
 
using Pointer = SmartPointer<Self>
 
using Self = LightObject
 

Public Member Functions

virtual::itk::LightObject::Pointer CreateAnother () const
 
void EstimateLearningRate () override
 
double GetCurrentStepLength () const
 
const char * GetNameOfClass () const override
 
void StartOptimization (bool doOnlyInitialization=false) override
 
virtual void SetMinimumStepLength (TInternalComputationValueType _arg)
 
virtual const TInternalComputationValueType & GetMinimumStepLength () const
 
virtual void SetRelaxationFactor (TInternalComputationValueType _arg)
 
virtual const TInternalComputationValueType & GetRelaxationFactor () const
 
virtual void SetGradientMagnitudeTolerance (TInternalComputationValueType _arg)
 
virtual const TInternalComputationValueType & GetGradientMagnitudeTolerance () const
 
virtual void SetCurrentLearningRateRelaxation (MeasureType _arg)
 
virtual const MeasureTypeGetCurrentLearningRateRelaxation () const
 
- Public Member Functions inherited from itk::GradientDescentOptimizerv4Template< double >
virtual const double & GetConvergenceValue () const
 
virtual const double & GetConvergenceValue () const
 
void ResumeOptimization () override
 
void ResumeOptimization () override
 
virtual void SetConvergenceWindowSize (SizeValueType _arg)
 
virtual void SetConvergenceWindowSize (SizeValueType _arg)
 
virtual void SetMinimumConvergenceValue (double _arg)
 
virtual void SetMinimumConvergenceValue (double _arg)
 
void StopOptimization () override
 
void StopOptimization () override
 
virtual void SetLearningRate (double _arg)
 
virtual const double & GetLearningRate () const
 
virtual void SetLearningRate (double _arg)
 
virtual const double & GetLearningRate () const
 
virtual void SetMaximumStepSizeInPhysicalUnits (double _arg)
 
virtual const double & GetMaximumStepSizeInPhysicalUnits () const
 
virtual void SetMaximumStepSizeInPhysicalUnits (double _arg)
 
virtual const double & GetMaximumStepSizeInPhysicalUnits () const
 
virtual void SetDoEstimateLearningRateAtEachIteration (bool _arg)
 
virtual const bool & GetDoEstimateLearningRateAtEachIteration () const
 
virtual void DoEstimateLearningRateAtEachIterationOn ()
 
virtual void DoEstimateLearningRateAtEachIterationOff ()
 
virtual void SetDoEstimateLearningRateAtEachIteration (bool _arg)
 
virtual const bool & GetDoEstimateLearningRateAtEachIteration () const
 
virtual void DoEstimateLearningRateAtEachIterationOn ()
 
virtual void DoEstimateLearningRateAtEachIterationOff ()
 
virtual void SetDoEstimateLearningRateOnce (bool _arg)
 
virtual const bool & GetDoEstimateLearningRateOnce () const
 
virtual void DoEstimateLearningRateOnceOn ()
 
virtual void DoEstimateLearningRateOnceOff ()
 
virtual void SetDoEstimateLearningRateOnce (bool _arg)
 
virtual const bool & GetDoEstimateLearningRateOnce () const
 
virtual void DoEstimateLearningRateOnceOn ()
 
virtual void DoEstimateLearningRateOnceOff ()
 
virtual void SetReturnBestParametersAndValue (bool _arg)
 
virtual const bool & GetReturnBestParametersAndValue () const
 
virtual void ReturnBestParametersAndValueOn ()
 
virtual void ReturnBestParametersAndValueOff ()
 
virtual void SetReturnBestParametersAndValue (bool _arg)
 
virtual const bool & GetReturnBestParametersAndValue () const
 
virtual void ReturnBestParametersAndValueOn ()
 
virtual void ReturnBestParametersAndValueOff ()
 
- Public Member Functions inherited from itk::GradientDescentOptimizerBasev4Template< double >
virtual const DerivativeTypeGetGradient () const
 
virtual const DerivativeTypeGetGradient () const
 
virtual const StopConditionObjectToObjectOptimizerEnumGetStopCondition () const
 
virtual const StopConditionObjectToObjectOptimizerEnumGetStopCondition () const
 
StopConditionReturnStringType GetStopConditionDescription () const override
 
StopConditionReturnStringType GetStopConditionDescription () const override
 
virtual void ModifyGradientByScales ()
 
virtual void ModifyGradientByLearningRate ()
 
virtual void ModifyGradientByScales ()
 
virtual void ModifyGradientByLearningRate ()
 
- Public Member Functions inherited from itk::ObjectToObjectOptimizerBaseTemplate< double >
virtual bool CanUseScales () const
 
virtual bool CanUseScales () const
 
virtual SizeValueType GetCurrentIteration () const
 
virtual SizeValueType GetCurrentIteration () const
 
virtual const MeasureTypeGetCurrentMetricValue () const
 
virtual const MeasureTypeGetCurrentMetricValue () const
 
virtual const ParametersTypeGetCurrentPosition () const
 
virtual const ParametersTypeGetCurrentPosition () const
 
virtual SizeValueType GetNumberOfIterations () const
 
virtual SizeValueType GetNumberOfIterations () const
 
virtual const ThreadIdTypeGetNumberOfWorkUnits () const
 
virtual const ThreadIdTypeGetNumberOfWorkUnits () const
 
virtual const ScalesTypeGetScales () const
 
virtual const ScalesTypeGetScales () const
 
virtual const bool & GetScalesAreIdentity () const
 
virtual const bool & GetScalesAreIdentity () const
 
bool GetScalesInitialized () const
 
bool GetScalesInitialized () const
 
virtual const MeasureTypeGetValue () const
 
virtual const MeasureTypeGetValue () const
 
virtual const ScalesTypeGetWeights () const
 
virtual const ScalesTypeGetWeights () const
 
virtual const bool & GetWeightsAreIdentity () const
 
virtual const bool & GetWeightsAreIdentity () const
 
virtual void SetNumberOfIterations (SizeValueType _arg)
 
virtual void SetNumberOfIterations (SizeValueType _arg)
 
virtual void SetNumberOfWorkUnits (ThreadIdType number)
 
virtual void SetNumberOfWorkUnits (ThreadIdType number)
 
virtual void SetScalesEstimator (ScalesEstimatorType *_arg)
 
virtual void SetScalesEstimator (ScalesEstimatorType *_arg)
 
virtual void SetWeights (ScalesType _arg)
 
virtual void SetWeights (ScalesType _arg)
 
virtual void SetMetric (MetricType *_arg)
 
virtual MetricTypeGetModifiableMetric ()
 
virtual const MetricTypeGetMetric () const
 
virtual void SetMetric (MetricType *_arg)
 
virtual MetricTypeGetModifiableMetric ()
 
virtual const MetricTypeGetMetric () const
 
virtual void SetScales (const ScalesType &scales)
 
virtual void SetScales (const ScalesType &scales)
 
virtual void SetDoEstimateScales (bool _arg)
 
virtual const bool & GetDoEstimateScales () const
 
virtual void DoEstimateScalesOn ()
 
virtual void DoEstimateScalesOff ()
 
virtual void SetDoEstimateScales (bool _arg)
 
virtual const bool & GetDoEstimateScales () const
 
virtual void DoEstimateScalesOn ()
 
virtual void DoEstimateScalesOff ()
 
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *cmd) const
 
unsigned long AddObserver (const EventObject &event, std::function< void(const EventObject &)> function) const
 
virtual void DebugOff () const
 
virtual void DebugOn () const
 
CommandGetCommand (unsigned long tag)
 
bool GetDebug () const
 
MetaDataDictionaryGetMetaDataDictionary ()
 
const MetaDataDictionaryGetMetaDataDictionary () const
 
virtual ModifiedTimeType GetMTime () const
 
virtual const TimeStampGetTimeStamp () const
 
bool HasObserver (const EventObject &event) const
 
void InvokeEvent (const EventObject &)
 
void InvokeEvent (const EventObject &) const
 
virtual void Modified () const
 
void Register () const override
 
void RemoveAllObservers ()
 
void RemoveObserver (unsigned long tag) const
 
void SetDebug (bool debugFlag) const
 
void SetReferenceCount (int) override
 
void UnRegister () const noexcept override
 
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
 
void SetMetaDataDictionary (MetaDataDictionary &&rrhs)
 
virtual void SetObjectName (std::string _arg)
 
virtual const std::string & GetObjectName () const
 
- Public Member Functions inherited from itk::LightObject
Pointer Clone () const
 
virtual void Delete ()
 
virtual int GetReferenceCount () const
 
void Print (std::ostream &os, Indent indent=0) const
 

Static Public Member Functions

static Pointer New ()
 
- Static Public Member Functions inherited from itk::GradientDescentOptimizerv4Template< double >
static Pointer New ()
 
static Pointer New ()
 
- Static Public Member Functions inherited from itk::Object
static bool GetGlobalWarningDisplay ()
 
static void GlobalWarningDisplayOff ()
 
static void GlobalWarningDisplayOn ()
 
static Pointer New ()
 
static void SetGlobalWarningDisplay (bool val)
 
- Static Public Member Functions inherited from itk::LightObject
static void BreakOnError ()
 
static Pointer New ()
 

Protected Member Functions

void AdvanceOneStep () override
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
 RegularStepGradientDescentOptimizerv4 ()
 
 ~RegularStepGradientDescentOptimizerv4 () override=default
 
void ModifyGradientByScalesOverSubRange (const IndexRangeType &subrange) override
 
void ModifyGradientByLearningRateOverSubRange (const IndexRangeType &subrange) override
 
- Protected Member Functions inherited from itk::GradientDescentOptimizerv4Template< double >
 GradientDescentOptimizerv4Template ()
 
 GradientDescentOptimizerv4Template ()
 
 ~GradientDescentOptimizerv4Template () override=default
 
 ~GradientDescentOptimizerv4Template () override=default
 
- Protected Member Functions inherited from itk::GradientDescentOptimizerBasev4Template< double >
 GradientDescentOptimizerBasev4Template ()
 
 ~GradientDescentOptimizerBasev4Template () override=default
 
 GradientDescentOptimizerBasev4Template ()
 
 ~GradientDescentOptimizerBasev4Template () override=default
 
- Protected Member Functions inherited from itk::ObjectToObjectOptimizerBaseTemplate< double >
 ObjectToObjectOptimizerBaseTemplate ()
 
 ObjectToObjectOptimizerBaseTemplate ()
 
 ~ObjectToObjectOptimizerBaseTemplate () override
 
 ~ObjectToObjectOptimizerBaseTemplate () override
 
- Protected Member Functions inherited from itk::Object
 Object ()
 
bool PrintObservers (std::ostream &os, Indent indent) const
 
virtual void SetTimeStamp (const TimeStamp &timeStamp)
 
 ~Object () override
 
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 
 LightObject ()
 
virtual void PrintHeader (std::ostream &os, Indent indent) const
 
virtual void PrintTrailer (std::ostream &os, Indent indent) const
 
virtual ~LightObject ()
 

Private Attributes

MeasureType m_CurrentLearningRateRelaxation {}
 
TInternalComputationValueType m_GradientMagnitudeTolerance {}
 
TInternalComputationValueType m_MinimumStepLength {}
 
TInternalComputationValueType m_RelaxationFactor {}
 

Additional Inherited Members

- Protected Attributes inherited from itk::GradientDescentOptimizerv4Template< double >
ParametersType m_BestParameters
 
ParametersType m_BestParameters
 
double m_ConvergenceValue
 
double m_ConvergenceValue
 
MeasureType m_CurrentBestValue
 
MeasureType m_CurrentBestValue
 
double m_LearningRate
 
double m_LearningRate
 
double m_MinimumConvergenceValue
 
double m_MinimumConvergenceValue
 
DerivativeType m_PreviousGradient
 
DerivativeType m_PreviousGradient
 
bool m_ReturnBestParametersAndValue
 
bool m_ReturnBestParametersAndValue
 
- Protected Attributes inherited from itk::GradientDescentOptimizerBasev4Template< double >
ConvergenceMonitoringType::Pointer m_ConvergenceMonitoring
 
ConvergenceMonitoringType::Pointer m_ConvergenceMonitoring
 
SizeValueType m_ConvergenceWindowSize
 
SizeValueType m_ConvergenceWindowSize
 
bool m_DoEstimateLearningRateAtEachIteration
 
bool m_DoEstimateLearningRateAtEachIteration
 
bool m_DoEstimateLearningRateOnce
 
bool m_DoEstimateLearningRateOnce
 
DerivativeType m_Gradient
 
DerivativeType m_Gradient
 
double m_MaximumStepSizeInPhysicalUnits
 
double m_MaximumStepSizeInPhysicalUnits
 
DomainThreader< ThreadedIndexedContainerPartitioner, Self >::Pointer m_ModifyGradientByLearningRateThreader
 
DomainThreader< ThreadedIndexedContainerPartitioner, Self >::Pointer m_ModifyGradientByLearningRateThreader
 
DomainThreader< ThreadedIndexedContainerPartitioner, Self >::Pointer m_ModifyGradientByScalesThreader
 
DomainThreader< ThreadedIndexedContainerPartitioner, Self >::Pointer m_ModifyGradientByScalesThreader
 
bool m_Stop
 
bool m_Stop
 
StopConditionObjectToObjectOptimizerEnum m_StopCondition
 
StopConditionObjectToObjectOptimizerEnum m_StopCondition
 
StopConditionDescriptionType m_StopConditionDescription
 
StopConditionDescriptionType m_StopConditionDescription
 
bool m_UseConvergenceMonitoring
 
bool m_UseConvergenceMonitoring
 
- Protected Attributes inherited from itk::ObjectToObjectOptimizerBaseTemplate< double >
SizeValueType m_CurrentIteration
 
SizeValueType m_CurrentIteration
 
MeasureType m_CurrentMetricValue
 
MeasureType m_CurrentMetricValue
 
bool m_DoEstimateScales
 
bool m_DoEstimateScales
 
MetricTypePointer m_Metric
 
MetricTypePointer m_Metric
 
SizeValueType m_NumberOfIterations
 
SizeValueType m_NumberOfIterations
 
ThreadIdType m_NumberOfWorkUnits
 
ThreadIdType m_NumberOfWorkUnits
 
ScalesType m_Scales
 
ScalesType m_Scales
 
bool m_ScalesAreIdentity
 
bool m_ScalesAreIdentity
 
ScalesEstimatorType::Pointer m_ScalesEstimator
 
ScalesEstimatorType::Pointer m_ScalesEstimator
 
ScalesType m_Weights
 
ScalesType m_Weights
 
bool m_WeightsAreIdentity
 
bool m_WeightsAreIdentity
 
- Protected Attributes inherited from itk::LightObject
std::atomic< int > m_ReferenceCount {}
 

Member Typedef Documentation

◆ CompensatedSummationType

template<typename TInternalComputationValueType = double>
using itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::CompensatedSummationType = CompensatedSummation<InternalComputationValueType>

Compensated summation type.

Definition at line 79 of file itkRegularStepGradientDescentOptimizerv4.h.

◆ ConstPointer

template<typename TInternalComputationValueType = double>
using itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::ConstPointer = SmartPointer<const Self>

Definition at line 57 of file itkRegularStepGradientDescentOptimizerv4.h.

◆ DerivativeType

template<typename TInternalComputationValueType = double>
using itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >::DerivativeType

Derivative type

Definition at line 102 of file itkObjectToObjectOptimizerBase.h.

◆ IndexRangeType

template<typename TInternalComputationValueType = double>
using itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType >::IndexRangeType

Definition at line 106 of file itkGradientDescentOptimizerBasev4.h.

◆ InternalComputationValueType

template<typename TInternalComputationValueType = double>
using itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::InternalComputationValueType = TInternalComputationValueType

It should be possible to derive the internal computation type from the class object.

Definition at line 67 of file itkRegularStepGradientDescentOptimizerv4.h.

◆ MeasureType

template<typename TInternalComputationValueType = double>
using itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >::MeasureType

Measure type

Definition at line 105 of file itkObjectToObjectOptimizerBase.h.

◆ ParametersType

template<typename TInternalComputationValueType = double>
using itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >::ParametersType

Parameters type.

Definition at line 108 of file itkObjectToObjectOptimizerBase.h.

◆ Pointer

template<typename TInternalComputationValueType = double>
using itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::Pointer = SmartPointer<Self>

Definition at line 56 of file itkRegularStepGradientDescentOptimizerv4.h.

◆ ScalesType

template<typename TInternalComputationValueType = double>
using itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >::ScalesType

Scale type.

Definition at line 107 of file itkObjectToObjectOptimizerBase.h.

◆ Self

template<typename TInternalComputationValueType = double>
using itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::Self = RegularStepGradientDescentOptimizerv4

Standard class type aliases.

Definition at line 54 of file itkRegularStepGradientDescentOptimizerv4.h.

◆ Superclass

template<typename TInternalComputationValueType = double>
using itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::Superclass = GradientDescentOptimizerv4Template<TInternalComputationValueType>

Definition at line 55 of file itkRegularStepGradientDescentOptimizerv4.h.

Constructor & Destructor Documentation

◆ RegularStepGradientDescentOptimizerv4()

template<typename TInternalComputationValueType = double>
itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::RegularStepGradientDescentOptimizerv4 ( )
protected

Default constructor.

Referenced by GetNameOfClass().

◆ ~RegularStepGradientDescentOptimizerv4()

template<typename TInternalComputationValueType = double>
itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::~RegularStepGradientDescentOptimizerv4 ( )
overrideprotecteddefault

Destructor.

Member Function Documentation

◆ AdvanceOneStep()

template<typename TInternalComputationValueType = double>
void itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::AdvanceOneStep ( )
overrideprotectedvirtual

Advance one Step following the gradient direction. Includes transform update.

Reimplemented from itk::GradientDescentOptimizerv4Template< double >.

◆ CreateAnother()

template<typename TInternalComputationValueType = double>
virtual::itk::LightObject::Pointer itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::CreateAnother ( ) const
virtual

Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.

Reimplemented from itk::GradientDescentOptimizerv4Template< double >.

◆ EstimateLearningRate()

template<typename TInternalComputationValueType = double>
void itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::EstimateLearningRate ( )
overridevirtual

Estimate the learning rate based on the current gradient.

Reimplemented from itk::GradientDescentOptimizerv4Template< double >.

◆ GetCurrentLearningRateRelaxation()

template<typename TInternalComputationValueType = double>
virtual const MeasureType & itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::GetCurrentLearningRateRelaxation ( ) const
virtual

Set/Get current scale for learning rate.

◆ GetCurrentStepLength()

template<typename TInternalComputationValueType = double>
double itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::GetCurrentStepLength ( ) const

Get current gradient step value.

◆ GetGradientMagnitudeTolerance()

template<typename TInternalComputationValueType = double>
virtual const TInternalComputationValueType & itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::GetGradientMagnitudeTolerance ( ) const
virtual

Set/Get gradient magnitude tolerance value for convergence checking.

◆ GetMinimumStepLength()

template<typename TInternalComputationValueType = double>
virtual const TInternalComputationValueType & itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::GetMinimumStepLength ( ) const
virtual

Minimum step length (learning rate) value for convergence checking. When the local minima is passed by taking a large step, the step length is adjusted (decreased) by the relaxation factor, so that smaller steps are taken towards the minimum point (convergence). When the step length value reaches a small value, it would be treated as converged.

The default value is set to 1e-4 to pass all tests.

◆ GetNameOfClass()

template<typename TInternalComputationValueType = double>
const char * itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::GetNameOfClass ( ) const
overridevirtual

◆ GetRelaxationFactor()

template<typename TInternalComputationValueType = double>
virtual const TInternalComputationValueType & itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::GetRelaxationFactor ( ) const
virtual

Set/Get relaxation factor value.

◆ ModifyGradientByLearningRateOverSubRange()

template<typename TInternalComputationValueType = double>
void itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::ModifyGradientByLearningRateOverSubRange ( const IndexRangeType & subrange)
overrideprotectedvirtual

Modify the input gradient over a given index range.

Reimplemented from itk::GradientDescentOptimizerv4Template< double >.

◆ ModifyGradientByScalesOverSubRange()

template<typename TInternalComputationValueType = double>
void itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::ModifyGradientByScalesOverSubRange ( const IndexRangeType & subrange)
overrideprotectedvirtual

Modify the input gradient over a given index range.

Reimplemented from itk::GradientDescentOptimizerv4Template< double >.

◆ New()

template<typename TInternalComputationValueType = double>
static Pointer itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::New ( )
static

New macro for creation of through a Smart Pointer.

◆ PrintSelf()

template<typename TInternalComputationValueType = double>
void itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::PrintSelf ( std::ostream & os,
Indent indent ) const
overrideprotectedvirtual

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::GradientDescentOptimizerv4Template< double >.

◆ SetCurrentLearningRateRelaxation()

template<typename TInternalComputationValueType = double>
virtual void itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::SetCurrentLearningRateRelaxation ( MeasureType _arg)
virtual

Set/Get current scale for learning rate.

◆ SetGradientMagnitudeTolerance()

template<typename TInternalComputationValueType = double>
virtual void itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::SetGradientMagnitudeTolerance ( TInternalComputationValueType _arg)
virtual

Set/Get gradient magnitude tolerance value for convergence checking.

◆ SetMinimumStepLength()

template<typename TInternalComputationValueType = double>
virtual void itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::SetMinimumStepLength ( TInternalComputationValueType _arg)
virtual

Minimum step length (learning rate) value for convergence checking. When the local minima is passed by taking a large step, the step length is adjusted (decreased) by the relaxation factor, so that smaller steps are taken towards the minimum point (convergence). When the step length value reaches a small value, it would be treated as converged.

The default value is set to 1e-4 to pass all tests.

◆ SetRelaxationFactor()

template<typename TInternalComputationValueType = double>
virtual void itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::SetRelaxationFactor ( TInternalComputationValueType _arg)
virtual

Set/Get relaxation factor value.

◆ StartOptimization()

template<typename TInternalComputationValueType = double>
void itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::StartOptimization ( bool doOnlyInitialization = false)
overridevirtual

Start and run the optimization.

Reimplemented from itk::GradientDescentOptimizerv4Template< double >.

Member Data Documentation

◆ m_CurrentLearningRateRelaxation

template<typename TInternalComputationValueType = double>
MeasureType itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::m_CurrentLearningRateRelaxation {}
private

Definition at line 152 of file itkRegularStepGradientDescentOptimizerv4.h.

◆ m_GradientMagnitudeTolerance

template<typename TInternalComputationValueType = double>
TInternalComputationValueType itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::m_GradientMagnitudeTolerance {}
private

Definition at line 150 of file itkRegularStepGradientDescentOptimizerv4.h.

◆ m_MinimumStepLength

template<typename TInternalComputationValueType = double>
TInternalComputationValueType itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::m_MinimumStepLength {}
private

Definition at line 148 of file itkRegularStepGradientDescentOptimizerv4.h.

◆ m_RelaxationFactor

template<typename TInternalComputationValueType = double>
TInternalComputationValueType itk::RegularStepGradientDescentOptimizerv4< TInternalComputationValueType >::m_RelaxationFactor {}
private

Definition at line 146 of file itkRegularStepGradientDescentOptimizerv4.h.


The documentation for this class was generated from the following file: