ITK  6.0.0
Insight Toolkit
itkVectorGradientMagnitudeImageFilter.h
Go to the documentation of this file.
1/*=========================================================================
2 *
3 * Copyright NumFOCUS
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * https://www.apache.org/licenses/LICENSE-2.0.txt
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 *=========================================================================*/
18#ifndef itkVectorGradientMagnitudeImageFilter_h
19#define itkVectorGradientMagnitudeImageFilter_h
20
23#include "itkImage.h"
24#include "itkVector.h"
25#include "vnl/vnl_matrix.h"
26#include "vnl/vnl_vector_fixed.h"
27#include "vnl/algo/vnl_symmetric_eigensystem.h"
28#include "itkMath.h"
29
30namespace itk
31{
105 * \par Constraints
106 * The filter requires an image with at least two dimensions and a vector
107 * length of at least 2. The theory supports extension to scalar images, but
108 * the implementation of the itk vector classes do not
109 *
110 * The template parameter TRealType must be floating point (float or double) or
111 * a user-defined "real" numerical type with arithmetic operations defined
112 * sufficient to compute derivatives.
113 *
114 * \par Performance
115 * This filter will automatically multithread if run with
116 * SetUsePrincipleComponents=Off or on 3D data in UsePrincipleComponents=On
117 * mode. Unfortunately the ND eigen solver used is not thread safe (a special
118 * 3D solver is), so it cannot multithread for data other than 3D in
120 *
121 * \par References
122 *
123 * [1] G. Sapiro and D. Ringach, "Anisotropic Diffusion of Multivalued Images
124 * with Application to Color Filtering," IEEE Transactions on Image Processing,
125 * Vol 5, No. 11 pp. 1582-1586, 1996
126
127 * \ingroup GradientFilters
128 *
129 * \sa Image
130 * \sa Neighborhood
133 * \ingroup ITKImageGradient
134 */
135template <typename TInputImage,
136 typename TRealType = float,
137 typename TOutputImage = Image<TRealType, TInputImage::ImageDimension>>
138class ITK_TEMPLATE_EXPORT VectorGradientMagnitudeImageFilter : public ImageToImageFilter<TInputImage, TOutputImage>
139{
140public:
142
148
151
154
157 using OutputPixelType = typename TOutputImage::PixelType;
158 using InputPixelType = typename TInputImage::PixelType;
159
161 using InputImageType = TInputImage;
162 using OutputImageType = TOutputImage;
165
168 static constexpr unsigned int InputImageDimension = TInputImage::ImageDimension;
169 static constexpr unsigned int ImageDimension = TOutputImage::ImageDimension;
170
172 static constexpr unsigned int VectorDimension = InputPixelType::Dimension;
173
175 using RealType = TRealType;
178
183
185 using typename Superclass::OutputImageRegionType;
186
195 void
197
203 void
205 itkGetConstMacro(UseImageSpacing, bool);
206 itkBooleanMacro(UseImageSpacing);
209#if !defined(ITK_FUTURE_LEGACY_REMOVE)
215 void
217 {
218 this->SetUseImageSpacing(true);
219 }
220
225 void
227 {
228 this->SetUseImageSpacing(false);
229 }
230#endif
231
234#if !defined(ITK_LEGACY_REMOVE)
235 using WeightsType [[deprecated("Use DerivativeWeightsType or ComponentWeightsType instead.")]] = ComponentWeightsType;
236#endif
237
260#if !defined(ITK_FUTURE_LEGACY_REMOVE)
262 void
264 {
265 this->SetUsePrincipleComponents(true);
266 }
267
269 void
271 {
272 this->SetUsePrincipleComponents(false);
273 }
274#endif
275
278 static int
279 CubicSolver(const double *, double *);
280
281#ifdef ITK_USE_CONCEPT_CHECKING
282 // Begin concept checking
285 itkConceptMacro(RealTypeHasNumericTraitsCheck, (Concept::HasNumericTraits<RealType>));
286 // End concept checking
287#endif
288
289protected:
292
296 void
298
310 void
311 DynamicThreadedGenerateData(const OutputImageRegionType & outputRegionForThread) override;
312
313
314 void
315 PrintSelf(std::ostream & os, Indent indent) const override;
316
318
321
322 TRealType
324 {
325 unsigned int i;
326 unsigned int j;
327 TRealType dx;
328 TRealType sum;
329 auto accum = TRealType{};
330 for (i = 0; i < ImageDimension; ++i)
331 {
332 sum = TRealType{};
333 for (j = 0; j < VectorDimension; ++j)
334 {
335 dx = m_DerivativeWeights[i] * m_SqrtComponentWeights[j] * 0.5 * (it.GetNext(i)[j] - it.GetPrevious(i)[j]);
336 sum += dx * dx;
337 }
338 accum += sum;
339 }
340 return std::sqrt(accum);
341 }
342
343 TRealType
345 {
346 // WARNING: ONLY CALL THIS METHOD WHEN PROCESSING A 3D IMAGE
347 unsigned int i;
348 unsigned int j;
349 double Lambda[3];
350 double CharEqn[3];
351 double ans;
352
353 vnl_matrix<TRealType> g(ImageDimension, ImageDimension);
354 vnl_vector_fixed<TRealType, VectorDimension> d_phi_du[TInputImage::ImageDimension];
355
356 // Calculate the directional derivatives for each vector component using
357 // central differences.
358 for (i = 0; i < ImageDimension; ++i)
359 {
360 for (j = 0; j < VectorDimension; ++j)
361 {
362 d_phi_du[i][j] =
363 m_DerivativeWeights[i] * m_SqrtComponentWeights[j] * 0.5 * (it.GetNext(i)[j] - it.GetPrevious(i)[j]);
364 }
365 }
366
367 // Calculate the symmetric metric tensor g
368 for (i = 0; i < ImageDimension; ++i)
369 {
370 for (j = i; j < ImageDimension; ++j)
371 {
372 g[j][i] = g[i][j] = dot_product(d_phi_du[i], d_phi_du[j]);
373 }
374 }
375
376 // Find the coefficients of the characteristic equation det(g - lambda I)=0
377 // CharEqn[3] = 1.0;
378
379 CharEqn[2] = -(g[0][0] + g[1][1] + g[2][2]);
380
381 CharEqn[1] = (g[0][0] * g[1][1] + g[0][0] * g[2][2] + g[1][1] * g[2][2]) -
382 (g[0][1] * g[1][0] + g[0][2] * g[2][0] + g[1][2] * g[2][1]);
383
384 CharEqn[0] = g[0][0] * (g[1][2] * g[2][1] - g[1][1] * g[2][2]) + g[1][0] * (g[2][2] * g[0][1] - g[0][2] * g[2][1]) +
385 g[2][0] * (g[1][1] * g[0][2] - g[0][1] * g[1][2]);
386
387 // Find the eigenvalues of g
388 const int numberOfDistinctRoots = this->CubicSolver(CharEqn, Lambda);
389
390 // Define gradient magnitude as the difference between two largest
391 // eigenvalues. Other definitions may be appropriate here as well.
392 if (numberOfDistinctRoots == 3) // By far the most common case
393 {
394 if (Lambda[0] > Lambda[1])
395 {
396 if (Lambda[1] > Lambda[2]) // Most common, guaranteed?
397 {
398 ans = Lambda[0] - Lambda[1];
399 }
400 else
401 {
402 if (Lambda[0] > Lambda[2])
403 {
404 ans = Lambda[0] - Lambda[2];
405 }
406 else
407 {
408 ans = Lambda[2] - Lambda[0];
409 }
410 }
411 }
412 else
413 {
414 if (Lambda[0] > Lambda[2])
415 {
416 ans = Lambda[1] - Lambda[0];
417 }
418 else
419 {
420 if (Lambda[1] > Lambda[2])
421 {
422 ans = Lambda[1] - Lambda[2];
423 }
424 else
425 {
426 ans = Lambda[2] - Lambda[1];
427 }
428 }
429 }
430 }
431 else if (numberOfDistinctRoots == 2)
432 {
433 if (Lambda[0] > Lambda[1])
434 {
435 ans = Lambda[0] - Lambda[1];
436 }
437 else
438 {
439 ans = Lambda[1] - Lambda[0];
440 }
441 }
442 else if (numberOfDistinctRoots == 1)
443 {
444 ans = 0.0;
445 }
446 else
447 {
448 itkExceptionMacro("Undefined condition. Cubic root solver returned " << numberOfDistinctRoots
449 << " distinct roots.");
450 }
451
452 return ans;
453 }
454
455 // Function is defined here because the templating confuses gcc 2.96 when
456 // defined
457 // in .hxx file. jc 1/29/03
458 TRealType
460 {
461 unsigned int i;
462 unsigned int j;
463
464 vnl_matrix<TRealType> g(ImageDimension, ImageDimension);
465 vnl_vector_fixed<TRealType, VectorDimension> d_phi_du[TInputImage::ImageDimension];
466
467 // Calculate the directional derivatives for each vector component using
468 // central differences.
469 for (i = 0; i < ImageDimension; ++i)
470 {
471 for (j = 0; j < VectorDimension; ++j)
472 {
473 d_phi_du[i][j] =
474 m_DerivativeWeights[i] * m_SqrtComponentWeights[j] * 0.5 * (it.GetNext(i)[j] - it.GetPrevious(i)[j]);
475 }
476 }
477
478 // Calculate the symmetric metric tensor g
479 for (i = 0; i < ImageDimension; ++i)
480 {
481 for (j = i; j < ImageDimension; ++j)
482 {
483 g[j][i] = g[i][j] = dot_product(d_phi_du[i], d_phi_du[j]);
484 }
485 }
486
487 // Find the eigenvalues of g
488 const vnl_symmetric_eigensystem<TRealType> E(g);
489
490 // Return the difference in length between the first two principle axes.
491 // Note that other edge strength metrics may be appropriate here instead..
492 return (E.get_eigenvalue(ImageDimension - 1) - E.get_eigenvalue(ImageDimension - 2));
493 }
494
496 DerivativeWeightsType m_DerivativeWeights = DerivativeWeightsType::Filled(1);
497
501 ComponentWeightsType m_ComponentWeights = ComponentWeightsType::Filled(1);
502 ComponentWeightsType m_SqrtComponentWeights = ComponentWeightsType::Filled(1);
505private:
506 bool m_UseImageSpacing{ true };
507 bool m_UsePrincipleComponents{};
508
509 ThreadIdType m_RequestedNumberOfWorkUnits{};
510
511 typename RealVectorImageType::ConstPointer m_RealValuedInputImage{};
512};
513} // end namespace itk
514
515#ifndef ITK_MANUAL_INSTANTIATION
516# include "itkVectorGradientMagnitudeImageFilter.hxx"
517#endif
518
519#endif
Const version of NeighborhoodIterator, defining iteration of a local N-dimensional neighborhood of pi...
PixelType GetPrevious(const unsigned int axis, NeighborIndexType i) const
PixelType GetNext(const unsigned int axis, NeighborIndexType i) const
Simulate a standard C array with copy semantics.
Definition: itkFixedArray.h:54
typename OutputImageType::RegionType OutputImageRegionType
Base class for filters that take an image as input and produce an image as output.
Templated n-dimensional image class.
Definition: itkImage.h:89
Control indentation during Print() invocation.
Definition: itkIndent.h:50
Light weight base class for most itk classes.
Defines iteration of a local N-dimensional neighborhood of pixels across an itk::Image.
Virtual class that defines a common interface to all neighborhood operator subtypes.
A light-weight container object for storing an N-dimensional neighborhood of values.
Computes a scalar, gradient magnitude image from a multiple channel (pixels are vectors) input.
itkGetConstMacro(UsePrincipleComponents, bool)
itkGetConstReferenceMacro(DerivativeWeights, DerivativeWeightsType)
~VectorGradientMagnitudeImageFilter() override=default
itkBooleanMacro(UsePrincipleComponents)
void PrintSelf(std::ostream &os, Indent indent) const override
itkGetConstObjectMacro(RealValuedInputImage, RealVectorImageType)
ITK_DISALLOW_COPY_AND_MOVE(VectorGradientMagnitudeImageFilter)
TRealType EvaluateAtNeighborhood3D(const ConstNeighborhoodIteratorType &it) const
itkConceptMacro(InputHasNumericTraitsCheck,(Concept::HasNumericTraits< typename InputPixelType::ValueType >))
itkGetConstReferenceMacro(ComponentWeights, ComponentWeightsType)
itkConceptMacro(RealTypeHasNumericTraitsCheck,(Concept::HasNumericTraits< RealType >))
static int CubicSolver(const double *, double *)
itkGetConstMacro(UseImageSpacing, bool)
typename ConstNeighborhoodIteratorType::RadiusType RadiusType
itkSetMacro(DerivativeWeights, DerivativeWeightsType)
TRealType EvaluateAtNeighborhood(const ConstNeighborhoodIteratorType &it) const
itkSetMacro(UsePrincipleComponents, bool)
itkOverrideGetNameOfClassMacro(VectorGradientMagnitudeImageFilter)
itkConceptMacro(SameDimensionCheck,(Concept::SameDimension< InputImageDimension, ImageDimension >))
void DynamicThreadedGenerateData(const OutputImageRegionType &outputRegionForThread) override
TRealType NonPCEvaluateAtNeighborhood(const ConstNeighborhoodIteratorType &it) const
itkSetMacro(ComponentWeights, ComponentWeightsType)
A templated class holding a n-Dimensional vector.
Definition: itkVector.h:63
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
The "itk" namespace contains all Insight Segmentation and Registration Toolkit (ITK) classes....
*par Constraints *The filter image with at least two dimensions and a vector *length of at least The theory supports extension to scalar but *the implementation of the itk vector classes do not **The template parameter TRealType must be floating so it cannot multithread for data other than in Anisotropic Diffusion of Multivalued Images *with Application to Color IEEE Transactions on Image No pp
*par Constraints *The filter image with at least two dimensions and a vector *length of at least The theory supports extension to scalar but *the implementation of the itk vector classes do not **The template parameter TRealType must be floating so it cannot multithread for data other than in Anisotropic Diffusion of Multivalued Images *with Application to Color IEEE Transactions on Image * Vol
*par Constraints *The filter image with at least two dimensions and a vector *length of at least The theory supports extension to scalar but *the implementation of the itk vector classes do not **The template parameter TRealType must be floating point(float or double) or *a user-defined "real" numerical type with arithmetic operations defined *sufficient to compute derivatives. **\par Performance *This filter will automatically multithread if run with *SetUsePrincipleComponents
*par Constraints *The filter image with at least two dimensions and a vector *length of at least The theory supports extension to scalar but *the implementation of the itk vector classes do not **The template parameter TRealType must be floating so it cannot multithread for data other than in * UsePrincipleComponents
unsigned int ThreadIdType
Definition: itkIntTypes.h:102
*par Constraints *The filter image with at least two dimensions and a vector *length of at least The theory supports extension to scalar but *the implementation of the itk vector classes do not **The template parameter TRealType must be floating so it cannot multithread for data other than in Anisotropic Diffusion of Multivalued Images *with Application to Color IEEE Transactions on Image Processing
*par Constraints *The filter image with at least two dimensions and a vector *length of at least The theory supports extension to scalar images