ITK  6.0.0
Insight Toolkit
Examples/RegistrationITKv4/DeformableRegistration13.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example is almost identical to
// Section~\ref{sec:DeformableRegistration12}, with the difference that it
// illustrates who to use the RegularStepGradientDescentOptimizer for a
// deformable registration task.
//
// \index{itk::BSplineTransform}
// \index{itk::BSplineTransform!DeformableRegistration}
// \index{itk::RegularStepGradientDescentOptimizer}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The following are the most relevant headers to this example.
//
// \index{itk::BSplineTransform!header}
// \index{itk::RegularStepGradientDescentOptimizer!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
using Self = CommandIterationUpdate;
itkNewMacro(Self);
protected:
CommandIterationUpdate() = default;
public:
using OptimizerPointer = const OptimizerType *;
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
auto optimizer = static_cast<OptimizerPointer>(object);
if (!(itk::IterationEvent().CheckEvent(&event)))
{
return;
}
std::cout << "Iteration : ";
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << std::endl;
}
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile outputImagefile ";
std::cerr << " [differenceOutputfile] [differenceBeforeRegistration] ";
std::cerr << " [deformationField] ";
std::cerr << " [useExplicitPDFderivatives ] [useCachingBSplineWeights ] ";
std::cerr << " [filenameForFinalTransformParameters] ";
std::cerr << std::endl;
return EXIT_FAILURE;
}
// For consistent results when regression testing.
->SetSeed(121212);
constexpr unsigned int ImageDimension = 2;
using PixelType = unsigned char;
using FixedImageType = itk::Image<PixelType, ImageDimension>;
using MovingImageType = itk::Image<PixelType, ImageDimension>;
// Software Guide : BeginLatex
//
// We instantiate now the type of the \code{BSplineTransform}
// using as template parameters the type for coordinates representation,
// the dimension of the space, and the order of the BSpline. We also
// instantiate the type of the optimizer.
//
// \index{BSplineTransform!New}
// \index{BSplineTransform!Instantiation}
// \index{RegularStepGradientDescentOptimizer!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr unsigned int SpaceDimension = ImageDimension;
constexpr unsigned int SplineOrder = 3;
using CoordinateRepType = double;
using TransformType =
// Software Guide : EndCodeSnippet
using MetricType =
MovingImageType>;
using InterpolatorType =
using RegistrationType =
auto metric = MetricType::New();
auto optimizer = OptimizerType::New();
auto interpolator = InterpolatorType::New();
auto registration = RegistrationType::New();
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetInterpolator(interpolator);
auto transform = TransformType::New();
registration->SetTransform(transform);
using FixedImageReaderType = itk::ImageFileReader<FixedImageType>;
using MovingImageReaderType = itk::ImageFileReader<MovingImageType>;
auto fixedImageReader = FixedImageReaderType::New();
auto movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
const FixedImageType::ConstPointer fixedImage =
fixedImageReader->GetOutput();
registration->SetFixedImage(fixedImage);
registration->SetMovingImage(movingImageReader->GetOutput());
fixedImageReader->Update();
const FixedImageType::RegionType fixedRegion =
fixedImage->GetBufferedRegion();
registration->SetFixedImageRegion(fixedRegion);
constexpr unsigned int numberOfGridNodesInOneDimension = 7;
// Software Guide : BeginCodeSnippet
TransformType::PhysicalDimensionsType fixedPhysicalDimensions;
TransformType::MeshSizeType meshSize;
TransformType::OriginType fixedOrigin;
for (unsigned int i = 0; i < SpaceDimension; ++i)
{
fixedOrigin[i] = fixedImage->GetOrigin()[i];
fixedPhysicalDimensions[i] =
fixedImage->GetSpacing()[i] *
static_cast<double>(
fixedImage->GetLargestPossibleRegion().GetSize()[i] - 1);
}
meshSize.Fill(numberOfGridNodesInOneDimension - SplineOrder);
transform->SetTransformDomainOrigin(fixedOrigin);
transform->SetTransformDomainPhysicalDimensions(fixedPhysicalDimensions);
transform->SetTransformDomainMeshSize(meshSize);
transform->SetTransformDomainDirection(fixedImage->GetDirection());
using ParametersType = TransformType::ParametersType;
const unsigned int numberOfParameters = transform->GetNumberOfParameters();
ParametersType parameters(numberOfParameters);
parameters.Fill(0.0);
transform->SetParameters(parameters);
registration->SetInitialTransformParameters(transform->GetParameters());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we set the parameters of the RegularStepGradientDescentOptimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetMaximumStepLength(10.0);
optimizer->SetMinimumStepLength(0.01);
optimizer->SetRelaxationFactor(0.7);
optimizer->SetNumberOfIterations(200);
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
auto observer = CommandIterationUpdate::New();
optimizer->AddObserver(itk::IterationEvent(), observer);
metric->SetNumberOfHistogramBins(50);
const auto numberOfSamples =
static_cast<unsigned int>(fixedRegion.GetNumberOfPixels() * 60.0 / 100.0);
metric->SetNumberOfSpatialSamples(numberOfSamples);
if (argc > 7)
{
// Define whether to calculate the metric derivative by explicitly
// computing the derivatives of the joint PDF with respect to the
// Transform parameters, or doing it by progressively accumulating
// contributions from each bin in the joint PDF.
metric->SetUseExplicitPDFDerivatives(std::stoi(argv[7]));
}
if (argc > 8)
{
// Define whether to cache the BSpline weights and indexes corresponding
// to each one of the samples used to compute the metric. Enabling caching
// will make the algorithm run faster but it will have a cost on the
// amount of memory that needs to be allocated. This option is only
// relevant when using the BSplineTransform.
metric->SetUseCachingOfBSplineWeights(std::stoi(argv[8]));
}
// Add a time probe
std::cout << std::endl << "Starting Registration" << std::endl;
try
{
memorymeter.Start("Registration");
chronometer.Start("Registration");
registration->Update();
chronometer.Stop("Registration");
memorymeter.Stop("Registration");
std::cout << "Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
const OptimizerType::ParametersType finalParameters =
registration->GetLastTransformParameters();
// Report the time and memory taken by the registration
chronometer.Report(std::cout);
memorymeter.Report(std::cout);
transform->SetParameters(finalParameters);
using ResampleFilterType =
auto resample = ResampleFilterType::New();
resample->SetTransform(transform);
resample->SetInput(movingImageReader->GetOutput());
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
// This value is set to zero in order to make easier to perform
// regression testing in this example. However, for didactic
// exercise it will be better to set it to a medium gray value
// such as 100 or 128.
resample->SetDefaultPixelValue(0);
using OutputPixelType = unsigned char;
using CastFilterType =
auto writer = WriterType::New();
auto caster = CastFilterType::New();
writer->SetFileName(argv[3]);
caster->SetInput(resample->GetOutput());
writer->SetInput(caster->GetOutput());
try
{
writer->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
using DifferenceFilterType =
FixedImageType,
OutputImageType>;
auto difference = DifferenceFilterType::New();
auto writer2 = WriterType::New();
writer2->SetInput(difference->GetOutput());
// Compute the difference image between the
// fixed and resampled moving image.
if (argc > 4)
{
difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(resample->GetOutput());
writer2->SetFileName(argv[4]);
try
{
writer2->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
}
// Compute the difference image between the
// fixed and moving image before registration.
if (argc > 5)
{
writer2->SetFileName(argv[5]);
difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(movingImageReader->GetOutput());
try
{
writer2->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
}
// Generate the explicit deformation field resulting from
// the registration.
if (argc > 6)
{
using DisplacementFieldType = itk::Image<VectorType, ImageDimension>;
field->SetRegions(fixedRegion);
field->SetOrigin(fixedImage->GetOrigin());
field->SetSpacing(fixedImage->GetSpacing());
field->SetDirection(fixedImage->GetDirection());
field->Allocate();
FieldIterator fi(field, fixedRegion);
fi.GoToBegin();
TransformType::InputPointType fixedPoint;
TransformType::OutputPointType movingPoint;
VectorType displacement;
while (!fi.IsAtEnd())
{
index = fi.GetIndex();
field->TransformIndexToPhysicalPoint(index, fixedPoint);
movingPoint = transform->TransformPoint(fixedPoint);
displacement = movingPoint - fixedPoint;
fi.Set(displacement);
++fi;
}
auto fieldWriter = FieldWriterType::New();
fieldWriter->SetInput(field);
fieldWriter->SetFileName(argv[6]);
try
{
fieldWriter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
}
// Optionally, save the transform parameters in a file
if (argc > 9)
{
std::ofstream parametersFile;
parametersFile.open(argv[9]);
parametersFile << finalParameters << std::endl;
parametersFile.close();
}
return EXIT_SUCCESS;
}
Pixel-wise addition of two images.
Deformable transform using a BSpline representation.
Casts input pixels to output pixel type.
Superclass for callback/observer methods.
Definition: itkCommand.h:46
virtual void Execute(Object *caller, const EventObject &event)=0
Abstraction of the Events used to communicating among filters and with GUIs.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
A multi-dimensional iterator templated over image type that walks a region of pixels.
Base class for Image Registration Methods.
Templated n-dimensional image class.
Definition: itkImage.h:89
Linearly interpolate an image at specified positions.
Computes the mutual information between two images to be registered using the method of Mattes et al.
Aggregates a set of memory probes.
Base class for most ITK classes.
Definition: itkObject.h:62
Resample an image via a coordinate transform.
virtual void Start(const char *id)
virtual void Report(std::ostream &os=std::cout, bool printSystemInfo=true, bool printReportHead=true, bool useTabs=false)
virtual void Stop(const char *id)
Implements pixel-wise the computation of squared difference.
Aggregates a set of time probes.
A templated class holding a n-Dimensional vector.
Definition: itkVector.h:63
SmartPointer< const Self > ConstPointer
static Pointer New()
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
class ITK_FORWARD_EXPORT Command
Definition: itkObject.h:42