{
public:
using Self = CommandIterationUpdate;
protected:
CommandIterationUpdate() = default;
public:
using OptimizerPointer = const OptimizerType *;
void
{
}
void
{
auto optimizer = static_cast<OptimizerPointer>(object);
if (!itk::IterationEvent().CheckEvent(&event))
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " = ";
std::cout << optimizer->GetValue() << std::endl;
std::cout << "\t" << optimizer->GetCurrentGradientNorm() << " "
<< optimizer->GetCurrentParameterNorm() << " "
<< optimizer->GetCurrentStepSize() << std::endl;
}
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile outputImagefile ";
std::cerr << " [differenceOutputfile] [differenceBeforeRegistration] ";
std::cerr << " [deformationField] ";
return EXIT_FAILURE;
}
constexpr unsigned int ImageDimension = 2;
using PixelType = float;
constexpr unsigned int SpaceDimension = ImageDimension;
constexpr unsigned int SplineOrder = 3;
using CoordinateRepType = double;
using TransformType =
using MetricType =
using RegistrationType =
auto metric = MetricType::New();
auto optimizer = OptimizerType::New();
auto registration = RegistrationType::New();
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
auto fixedImageReader = FixedImageReaderType::New();
auto movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
const FixedImageType::ConstPointer fixedImage =
fixedImageReader->GetOutput();
registration->SetFixedImage(fixedImage);
registration->SetMovingImage(movingImageReader->GetOutput());
fixedImageReader->Update();
auto outputBSplineTransform = TransformType::New();
using InitializerType =
auto transformInitializer = InitializerType::New();
constexpr unsigned int numberOfGridNodesInOneDimension = 8;
numberOfGridNodesInOneDimension - SplineOrder);
transformInitializer->SetTransform(outputBSplineTransform);
transformInitializer->SetImage(fixedImage);
transformInitializer->SetTransformDomainMeshSize(meshSize);
transformInitializer->InitializeTransform();
using ParametersType = TransformType::ParametersType;
const unsigned int numberOfParameters =
outputBSplineTransform->GetNumberOfParameters();
ParametersType parameters(numberOfParameters);
parameters.Fill(0.0);
outputBSplineTransform->SetParameters(parameters);
registration->SetInitialTransform(outputBSplineTransform);
registration->InPlaceOn();
constexpr unsigned int numberOfLevels = 3;
RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize(numberOfLevels);
shrinkFactorsPerLevel[0] = 3;
shrinkFactorsPerLevel[1] = 2;
shrinkFactorsPerLevel[2] = 1;
RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize(numberOfLevels);
smoothingSigmasPerLevel[0] = 2;
smoothingSigmasPerLevel[1] = 1;
smoothingSigmasPerLevel[2] = 0;
registration->SetNumberOfLevels(numberOfLevels);
registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
RegistrationType::TransformParametersAdaptorsContainerType adaptors;
TransformType::PhysicalDimensionsType fixedPhysicalDimensions;
for (unsigned int i = 0; i < SpaceDimension; ++i)
{
fixedPhysicalDimensions[i] =
fixedImage->GetSpacing()[i] *
static_cast<double>(
fixedImage->GetLargestPossibleRegion().GetSize()[i] - 1);
}
for (unsigned int level = 0; level < numberOfLevels; ++level)
{
using ShrinkFilterType =
auto shrinkFilter = ShrinkFilterType::New();
shrinkFilter->SetShrinkFactors(shrinkFactorsPerLevel[level]);
shrinkFilter->SetInput(fixedImage);
shrinkFilter->Update();
TransformType::MeshSizeType requiredMeshSize;
for (unsigned int d = 0; d < ImageDimension; ++d)
{
requiredMeshSize[d] = meshSize[d] << level;
}
using BSplineAdaptorType =
auto bsplineAdaptor = BSplineAdaptorType::New();
bsplineAdaptor->SetTransform(outputBSplineTransform);
bsplineAdaptor->SetRequiredTransformDomainMeshSize(requiredMeshSize);
bsplineAdaptor->SetRequiredTransformDomainOrigin(
shrinkFilter->GetOutput()->GetOrigin());
bsplineAdaptor->SetRequiredTransformDomainDirection(
shrinkFilter->GetOutput()->GetDirection());
bsplineAdaptor->SetRequiredTransformDomainPhysicalDimensions(
fixedPhysicalDimensions);
adaptors.emplace_back(bsplineAdaptor);
}
registration->SetTransformParametersAdaptorsPerLevel(adaptors);
using ScalesEstimatorType =
auto scalesEstimator = ScalesEstimatorType::New();
scalesEstimator->SetMetric(metric);
scalesEstimator->SetTransformForward(true);
scalesEstimator->SetSmallParameterVariation(1.0);
optimizer->SetScalesEstimator(scalesEstimator);
optimizer->SetSolutionAccuracy(1e-4);
optimizer->SetHessianApproximationAccuracy(5);
optimizer->SetMaximumIterations(100);
optimizer->SetMaximumLineSearchEvaluations(10);
auto observer = CommandIterationUpdate::New();
optimizer->AddObserver(itk::IterationEvent(), observer);
std::cout << "Starting Registration " << std::endl;
try
{
registration->Update();
std::cout << "Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
using ResampleFilterType =
auto resample = ResampleFilterType::New();
resample->SetTransform(outputBSplineTransform);
resample->SetInput(movingImageReader->GetOutput());
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
using OutputPixelType = unsigned char;
using CastFilterType =
auto writer = WriterType::New();
auto caster = CastFilterType::New();
writer->SetFileName(argv[3]);
caster->SetInput(resample->GetOutput());
writer->SetInput(caster->GetOutput());
try
{
writer->Update();
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
using DifferenceFilterType =
FixedImageType,
OutputImageType>;
auto difference = DifferenceFilterType::New();
auto writer2 = WriterType::New();
writer2->SetInput(difference->GetOutput());
if (argc >= 5)
{
difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(resample->GetOutput());
writer2->SetFileName(argv[4]);
try
{
writer2->Update();
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
}
if (argc >= 6)
{
writer2->SetFileName(argv[5]);
difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(movingImageReader->GetOutput());
try
{
writer2->Update();
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
}
using DisplacementFieldImageType =
using DisplacementFieldGeneratorType =
CoordinateRepType>;
auto dispfieldGenerator = DisplacementFieldGeneratorType::New();
dispfieldGenerator->UseReferenceImageOn();
dispfieldGenerator->SetReferenceImage(fixedImage);
dispfieldGenerator->SetTransform(outputBSplineTransform);
try
{
dispfieldGenerator->Update();
}
{
std::cerr << "Exception detected while generating deformation field";
std::cerr << " : " << err << std::endl;
return EXIT_FAILURE;
}
auto fieldWriter = FieldWriterType::New();
fieldWriter->SetInput(dispfieldGenerator->GetOutput());
if (argc >= 7)
{
fieldWriter->SetFileName(argv[6]);
try
{
fieldWriter->Update();
}
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
Casts input pixels to output pixel type.
Superclass for callback/observer methods.
virtual void Execute(Object *caller, const EventObject &event)=0
Abstraction of the Events used to communicating among filters and with GUIs.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
Interface method for the current registration framework.
Templated n-dimensional image class.
Class implementing a mean squares metric.
Base class for most ITK classes.
Registration helper class for estimating scales of transform parameters a step sizes,...
Resample an image via a coordinate transform.
Reduce the size of an image by an integer factor in each dimension.
Implements transparent reference counting.
Implements pixel-wise the computation of squared difference.
A templated class holding a n-Dimensional vector.
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
constexpr TContainer MakeFilled(typename TContainer::const_reference value)
LBFGS2Optimizerv4Template< double > LBFGS2Optimizerv4