ITK  6.0.0
Insight Toolkit
Examples/RegistrationITKv4/DeformableRegistration8.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{BSplineTransform}
// class for performing registration of two $3D$ images and for the case of
// multi-modality images. The image metric of choice in this case is the
// \doxygen{MattesMutualInformationImageToImageMetricv4}.
//
// \index{itk::BSplineTransform}
// \index{itk::BSplineTransform!DeformableRegistration}
// \index{itk::LBFGSBOptimizerv4}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The following are the most relevant headers to this example.
//
// \index{itk::BSplineTransform!header}
// \index{itk::LBFGSBOptimizerv4!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
using Self = CommandIterationUpdate;
itkNewMacro(Self);
protected:
CommandIterationUpdate() = default;
public:
using OptimizerType = itk::LBFGSBOptimizerv4;
using OptimizerPointer = const OptimizerType *;
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
auto optimizer = static_cast<OptimizerPointer>(object);
if (!(itk::IterationEvent().CheckEvent(&event)))
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetCurrentMetricValue() << " ";
std::cout << optimizer->GetInfinityNormOfProjectedGradient() << std::endl;
}
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile outputImagefile ";
std::cerr << " [differenceOutputfile] [differenceBeforeRegistration] ";
std::cerr << " [deformationField] ";
std::cerr << " [filenameForFinalTransformParameters] "
"[numberOfGridNodesInOneDimension]";
std::cerr << std::endl;
return EXIT_FAILURE;
}
constexpr unsigned int ImageDimension = 3;
using PixelType = float;
using FixedImageType = itk::Image<PixelType, ImageDimension>;
using MovingImageType = itk::Image<PixelType, ImageDimension>;
// Software Guide : BeginLatex
//
// We instantiate now the type of the \code{BSplineTransform} using
// as template parameters the type for coordinates representation, the
// dimension of the space, and the order of the BSpline.
//
// \index{BSplineTransform!New}
// \index{BSplineTransform!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr unsigned int SpaceDimension = ImageDimension;
constexpr unsigned int SplineOrder = 3;
using CoordinateRepType = double;
using TransformType =
// Software Guide : EndCodeSnippet
using OptimizerType = itk::LBFGSBOptimizerv4;
using MetricType =
MovingImageType>;
using RegistrationType =
auto metric = MetricType::New();
auto optimizer = OptimizerType::New();
auto registration = RegistrationType::New();
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
using FixedImageReaderType = itk::ImageFileReader<FixedImageType>;
using MovingImageReaderType = itk::ImageFileReader<MovingImageType>;
auto fixedImageReader = FixedImageReaderType::New();
auto movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
const FixedImageType::ConstPointer fixedImage =
fixedImageReader->GetOutput();
registration->SetFixedImage(fixedImage);
registration->SetMovingImage(movingImageReader->GetOutput());
fixedImageReader->Update();
// Software Guide : BeginLatex
//
// The transform object is constructed, initialized like previous example
// and passed to the registration method.
//
// \index{itk::ImageRegistrationMethodv4!SetInitialTransform()}
// \index{itk::ImageRegistrationMethodv4!InPlaceOn()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto transform = TransformType::New();
// Software Guide : EndCodeSnippet
// Initialize the transform
unsigned int numberOfGridNodesInOneDimension = 5;
if (argc > 8)
{
numberOfGridNodesInOneDimension = std::stoi(argv[8]);
}
using InitializerType =
auto transformInitializer = InitializerType::New();
auto meshSize = itk::MakeFilled<TransformType::MeshSizeType>(
numberOfGridNodesInOneDimension - SplineOrder);
transformInitializer->SetTransform(transform);
transformInitializer->SetImage(fixedImage);
transformInitializer->SetTransformDomainMeshSize(meshSize);
transformInitializer->InitializeTransform();
// Set transform to identity
transform->SetIdentity();
// Software Guide : BeginCodeSnippet
registration->SetInitialTransform(transform);
registration->InPlaceOn();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we set the parameters of the LBFGSB Optimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numParameters = transform->GetNumberOfParameters();
OptimizerType::BoundSelectionType boundSelect(numParameters);
OptimizerType::BoundValueType upperBound(numParameters);
OptimizerType::BoundValueType lowerBound(numParameters);
boundSelect.Fill(OptimizerType::UNBOUNDED);
upperBound.Fill(0.0);
lowerBound.Fill(0.0);
optimizer->SetBoundSelection(boundSelect);
optimizer->SetUpperBound(upperBound);
optimizer->SetLowerBound(lowerBound);
optimizer->SetCostFunctionConvergenceFactor(1.e7);
optimizer->SetGradientConvergenceTolerance(1e-6);
optimizer->SetNumberOfIterations(200);
optimizer->SetMaximumNumberOfFunctionEvaluations(30);
optimizer->SetMaximumNumberOfCorrections(5);
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
auto observer = CommandIterationUpdate::New();
optimizer->AddObserver(itk::IterationEvent(), observer);
// A single level registration process is run using
// the shrink factor 1 and smoothing sigma 0.
//
constexpr unsigned int numberOfLevels = 1;
RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize(numberOfLevels);
shrinkFactorsPerLevel[0] = 1;
RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize(numberOfLevels);
smoothingSigmasPerLevel[0] = 0;
registration->SetNumberOfLevels(numberOfLevels);
registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
// Software Guide : BeginLatex
//
// Next we set the parameters of the Mattes Mutual Information Metric.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
metric->SetNumberOfHistogramBins(50);
// Software Guide : EndCodeSnippet
// Add time and memory probes
std::cout << std::endl << "Starting Registration" << std::endl;
try
{
memorymeter.Start("Registration");
chronometer.Start("Registration");
registration->Update();
chronometer.Stop("Registration");
memorymeter.Stop("Registration");
std::cout << "Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Report the time and memory taken by the registration
chronometer.Report(std::cout);
memorymeter.Report(std::cout);
const OptimizerType::ParametersType finalParameters =
transform->GetParameters();
std::cout << "Last Transform Parameters" << std::endl;
std::cout << finalParameters << std::endl;
// Finally we use the last transform in order to resample the image.
//
using ResampleFilterType =
auto resample = ResampleFilterType::New();
resample->SetTransform(transform);
resample->SetInput(movingImageReader->GetOutput());
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
// This value is set to zero in order to make easier to perform
// regression testing in this example. However, for didactic
// exercise it will be better to set it to a medium gray value
// such as 100 or 128.
resample->SetDefaultPixelValue(0);
using OutputPixelType = short;
using CastFilterType =
auto writer = WriterType::New();
auto caster = CastFilterType::New();
writer->SetFileName(argv[3]);
caster->SetInput(resample->GetOutput());
writer->SetInput(caster->GetOutput());
try
{
writer->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
using DifferenceFilterType =
FixedImageType,
OutputImageType>;
auto difference = DifferenceFilterType::New();
auto writer2 = WriterType::New();
writer2->SetInput(difference->GetOutput());
// Compute the difference image between the
// fixed and resampled moving image.
if (argc > 4)
{
difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(resample->GetOutput());
writer2->SetFileName(argv[4]);
try
{
writer2->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
}
// Compute the difference image between the
// fixed and moving image before registration.
if (argc > 5)
{
writer2->SetFileName(argv[5]);
difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(movingImageReader->GetOutput());
try
{
writer2->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
}
// Generate the explicit deformation field resulting from
// the registration.
if (argc > 6)
{
using VectorPixelType = itk::Vector<float, ImageDimension>;
using DisplacementFieldImageType =
using DisplacementFieldGeneratorType =
itk::TransformToDisplacementFieldFilter<DisplacementFieldImageType,
CoordinateRepType>;
auto dispfieldGenerator = DisplacementFieldGeneratorType::New();
dispfieldGenerator->UseReferenceImageOn();
dispfieldGenerator->SetReferenceImage(fixedImage);
dispfieldGenerator->SetTransform(transform);
try
{
dispfieldGenerator->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "Exception detected while generating deformation field";
std::cerr << " : " << err << std::endl;
return EXIT_FAILURE;
}
auto fieldWriter = FieldWriterType::New();
fieldWriter->SetInput(dispfieldGenerator->GetOutput());
fieldWriter->SetFileName(argv[6]);
try
{
fieldWriter->Update();
}
catch (const itk::ExceptionObject & excp)
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
}
// Optionally, save the transform parameters in a file
if (argc > 7)
{
std::ofstream parametersFile;
parametersFile.open(argv[7]);
parametersFile << finalParameters << std::endl;
parametersFile.close();
}
return EXIT_SUCCESS;
}
Pixel-wise addition of two images.
BSplineTransformInitializer is a helper class intended to initialize the control point grid such that...
Deformable transform using a BSpline representation.
Casts input pixels to output pixel type.
Superclass for callback/observer methods.
Definition: itkCommand.h:46
virtual void Execute(Object *caller, const EventObject &event)=0
Abstraction of the Events used to communicating among filters and with GUIs.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
Interface method for the current registration framework.
Templated n-dimensional image class.
Definition: itkImage.h:89
Limited memory Broyden Fletcher Goldfarb Shannon minimization with simple bounds.
Computes the mutual information between two images to be registered using the method of Mattes et al.
Aggregates a set of memory probes.
Base class for most ITK classes.
Definition: itkObject.h:62
Resample an image via a coordinate transform.
virtual void Start(const char *id)
virtual void Report(std::ostream &os=std::cout, bool printSystemInfo=true, bool printReportHead=true, bool useTabs=false)
virtual void Stop(const char *id)
Implements pixel-wise the computation of squared difference.
Aggregates a set of time probes.
Generate a displacement field from a coordinate transform.
A templated class holding a n-Dimensional vector.
Definition: itkVector.h:63
SmartPointer< const Self > ConstPointer
static Pointer New()
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
static constexpr double e
Definition: itkMath.h:56
class ITK_FORWARD_EXPORT Command
Definition: itkObject.h:42