{
public:
  using Self = CommandIterationUpdate;
  itkNewMacro(Self);
 
protected:
  CommandIterationUpdate() = default;
 
public:
  using OptimizerPointer = const OptimizerType *;
 
  void
  {
  }
 
  void
  {
    auto optimizer = static_cast<OptimizerPointer>(object);
    if (!itk::IterationEvent().CheckEvent(&event))
    {
      return;
    }
    std::cout << optimizer->GetCurrentIteration() << "   ";
    std::cout << optimizer->GetValue() << "   ";
    std::cout << optimizer->GetCurrentPosition() << std::endl;
  }
};
 
int
main(int argc, char * argv[])
{
  if (argc < 5)
  {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile  movingImageFile fixedImageMaskFile";
    std::cerr << " outputImagefile  [differenceOutputfile] ";
    std::cerr << " [differenceBeforeRegistration] " << std::endl;
    return EXIT_FAILURE;
  }
 
  using PixelType = float;
 
 
 
  using MetricType =
  using RegistrationType = itk::
    ImageRegistrationMethodv4<FixedImageType, MovingImageType, TransformType>;
 
  auto metric = MetricType::New();
  auto optimizer = OptimizerType::New();
  auto registration = RegistrationType::New();
 
  registration->SetMetric(metric);
  registration->SetOptimizer(optimizer);
 
  auto transform = TransformType::New();
  registration->SetInitialTransform(transform);
  registration->InPlaceOn();
 
  auto fixedImageReader = FixedImageReaderType::New();
  auto movingImageReader = MovingImageReaderType::New();
 
  fixedImageReader->SetFileName(argv[1]);
  movingImageReader->SetFileName(argv[2]);
 
  registration->SetFixedImage(fixedImageReader->GetOutput());
  registration->SetMovingImage(movingImageReader->GetOutput());
  fixedImageReader->Update();
 
  using TransformInitializerType =
                                      FixedImageType,
                                      MovingImageType>;
  auto initializer = TransformInitializerType::New();
 
  initializer->SetTransform(transform);
  initializer->SetFixedImage(fixedImageReader->GetOutput());
  initializer->SetMovingImage(movingImageReader->GetOutput());
 
  initializer->MomentsOn();
 
  initializer->InitializeTransform();
 
  transform->SetAngle(0.0);
 
  using OptimizerScalesType = OptimizerType::ScalesType;
  OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());
  constexpr double    translationScale = 1.0 / 1000.0;
 
  optimizerScales[0] = 1.0;
  optimizerScales[1] = translationScale;
  optimizerScales[2] = translationScale;
 
  optimizer->SetScales(optimizerScales);
 
  optimizer->SetLearningRate(0.1);
  optimizer->SetMinimumStepLength(0.001);
  optimizer->SetNumberOfIterations(200);
 
  
  
  auto observer = CommandIterationUpdate::New();
  optimizer->AddObserver(itk::IterationEvent(), observer);
 
  
  
  
  
  
  
  
  
 
  
  
 
  
  
  
  
  
  
  
  
  
 
  
  auto spatialObjectMask = MaskType::New();
  
 
  
  
  
  
  
  
  
 
  
 
  
 
  
  
  
  
  
 
  
  auto maskReader = MaskReaderType::New();
 
  maskReader->SetFileName(argv[3]);
  
 
  
  
  
  
  
  
  
  
  
 
  
  try
  {
    maskReader->Update();
  }
  {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
  }
  
 
  
  
  
  
  
  
  
  
 
  
  spatialObjectMask->SetImage(maskReader->GetOutput());
  spatialObjectMask->Update();
  
 
  
  
  
  
  
  
  
 
  
  metric->SetFixedImageMask(spatialObjectMask);
  
 
  
  
  constexpr unsigned int numberOfLevels = 1;
 
  RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
  shrinkFactorsPerLevel.SetSize(1);
  shrinkFactorsPerLevel[0] = 1;
 
  RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
  smoothingSigmasPerLevel.SetSize(1);
  smoothingSigmasPerLevel[0] = 0;
 
  registration->SetNumberOfLevels(numberOfLevels);
  registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
  registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
 
  try
  {
    registration->Update();
    std::cout << "Optimizer stop condition = "
              << registration->GetOptimizer()->GetStopConditionDescription()
              << std::endl;
  }
  {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
  }
 
  OptimizerType::ParametersType finalParameters = transform->GetParameters();
 
  const double finalAngle = finalParameters[0];
  const double finalTranslationX = finalParameters[1];
  const double finalTranslationY = finalParameters[2];
 
  const double rotationCenterX =
    registration->GetOutput()->Get()->GetFixedParameters()[0];
  const double rotationCenterY =
    registration->GetOutput()->Get()->GetFixedParameters()[1];
 
  const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
  const double       bestValue = optimizer->GetValue();
 
  
  
  const double finalAngleInDegrees = finalAngle * 45.0 / std::atan(1.0);
 
  std::cout << "Result = " << std::endl;
  std::cout << " Angle (radians) " << finalAngle << std::endl;
  std::cout << " Angle (degrees) " << finalAngleInDegrees << std::endl;
  std::cout << " Translation X  = " << finalTranslationX << std::endl;
  std::cout << " Translation Y  = " << finalTranslationY << std::endl;
  std::cout << " Fixed Center X = " << rotationCenterX << std::endl;
  std::cout << " Fixed Center Y = " << rotationCenterY << std::endl;
  std::cout << " Iterations     = " << numberOfIterations << std::endl;
  std::cout << " Metric value   = " << bestValue << std::endl;
 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 
  
  const TransformType::MatrixType matrix = transform->GetMatrix();
  const TransformType::OffsetType offset = transform->GetOffset();
 
  std::cout << "Matrix = " << std::endl << matrix << std::endl;
  std::cout << "Offset = " << std::endl << offset << std::endl;
  
 
  using ResampleFilterType =
  auto finalTransform = TransformType::New();
 
  finalTransform->SetParameters(finalParameters);
  finalTransform->SetFixedParameters(transform->GetFixedParameters());
 
  auto resample = ResampleFilterType::New();
 
  resample->SetTransform(finalTransform);
  resample->SetInput(movingImageReader->GetOutput());
 
  const FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
 
  resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
  resample->SetOutputOrigin(fixedImage->GetOrigin());
  resample->SetOutputSpacing(fixedImage->GetSpacing());
  resample->SetOutputDirection(fixedImage->GetDirection());
  resample->SetDefaultPixelValue(100);
 
  using OutputPixelType = unsigned char;
 
 
  using CastFilterType =
 
 
  auto writer = WriterType::New();
  auto caster = CastFilterType::New();
 
  writer->SetFileName(argv[4]);
 
  caster->SetInput(resample->GetOutput());
  writer->SetInput(caster->GetOutput());
  writer->Update();
 
  using DifferenceFilterType =
                                      FixedImageType,
                                      OutputImageType>;
 
  auto difference = DifferenceFilterType::New();
 
  auto writer2 = WriterType::New();
  writer2->SetInput(difference->GetOutput());
 
  
  
  if (argc >= 6)
  {
    difference->SetInput1(fixedImageReader->GetOutput());
    difference->SetInput2(resample->GetOutput());
    writer2->SetFileName(argv[5]);
    writer2->Update();
  }
 
  
  
  if (argc >= 7)
  {
    writer2->SetFileName(argv[6]);
    difference->SetInput1(fixedImageReader->GetOutput());
    difference->SetInput2(movingImageReader->GetOutput());
    writer2->Update();
  }
 
  return EXIT_SUCCESS;
}
Casts input pixels to output pixel type.
 
Superclass for callback/observer methods.
 
virtual void Execute(Object *caller, const EventObject &event)=0
 
Abstraction of the Events used to communicating among filters and with GUIs.
 
Standard exception handling object.
 
Data source that reads image data from a single file.
 
Writes image data to a single file.
 
Implementation of an image mask as spatial object.
 
Templated n-dimensional image class.
 
Class implementing a mean squares metric.
 
Base class for most ITK classes.
 
Regular Step Gradient descent optimizer.
 
Resample an image via a coordinate transform.
 
Implements transparent reference counting.
 
Implements pixel-wise the computation of squared difference.
 
constexpr unsigned int Dimension