ITK
6.0.0
Insight Toolkit
Examples/RegistrationITKv4/ImageRegistration13.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to do registration with a 2D Rigid Transform
// and with MutualInformation metric.
//
// Software Guide : EndLatex
#include "
itkImageRegistrationMethodv4.h
"
#include "
itkEuler2DTransform.h
"
#include "
itkCenteredTransformInitializer.h
"
// Software Guide : BeginCodeSnippet
#include "
itkMattesMutualInformationImageToImageMetricv4.h
"
// Software Guide : EndCodeSnippet
#include "
itkRegularStepGradientDescentOptimizerv4.h
"
#include "
itkMersenneTwisterRandomVariateGenerator.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
using
Self
= CommandIterationUpdate;
using
Superclass
=
itk::Command
;
using
Pointer
=
itk::SmartPointer<Self>
;
itkNewMacro(
Self
);
protected
:
CommandIterationUpdate() =
default
;
public
:
using
OptimizerType =
itk::RegularStepGradientDescentOptimizerv4<double>
;
using
OptimizerPointer =
const
OptimizerType *;
void
Execute
(
itk::Object
* caller,
const
itk::EventObject
& event)
override
{
Execute
((
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
override
{
auto
optimizer =
static_cast<
OptimizerPointer
>
(object);
if
(!itk::IterationEvent().CheckEvent(&event))
{
return
;
}
std::cout << optimizer->GetCurrentIteration() <<
" "
;
std::cout << optimizer->GetValue() <<
" "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(
int
argc,
char
* argv[])
{
if
(argc < 3)
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
"outputImagefile "
<< std::endl;
return
EXIT_FAILURE;
}
constexpr
unsigned
int
Dimension
= 2;
using
PixelType = float;
using
FixedImageType =
itk::Image<PixelType, Dimension>
;
using
MovingImageType =
itk::Image<PixelType, Dimension>
;
// Software Guide : BeginLatex
//
// The Euler2DTransform applies a rigid transform in 2D space.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
TransformType =
itk::Euler2DTransform<double>
;
// Software Guide : EndCodeSnippet
using
OptimizerType =
itk::RegularStepGradientDescentOptimizerv4<double>
;
using
RegistrationType = itk::
ImageRegistrationMethodv4<FixedImageType, MovingImageType, TransformType>;
// Software Guide : BeginCodeSnippet
using
MetricType =
itk::MattesMutualInformationImageToImageMetricv4
<FixedImageType,
MovingImageType>;
// Software Guide : EndCodeSnippet
auto
transform =
TransformType::New
();
auto
metric =
MetricType::New
();
auto
optimizer =
OptimizerType::New
();
auto
registration =
RegistrationType::New
();
registration->SetOptimizer(optimizer);
registration->SetMetric(metric);
// For consistent results when regression testing.
registration->MetricSamplingReinitializeSeed(121212);
// Software Guide : BeginCodeSnippet
metric->SetNumberOfHistogramBins(20);
constexpr
double
samplingPercentage = 0.20;
registration->SetMetricSamplingPercentage(samplingPercentage);
constexpr
RegistrationType::MetricSamplingStrategyEnum samplingStrategy =
RegistrationType::MetricSamplingStrategyEnum::RANDOM;
registration->SetMetricSamplingStrategy(samplingStrategy);
// Software Guide : EndCodeSnippet
using
FixedImageReaderType =
itk::ImageFileReader<FixedImageType>
;
using
MovingImageReaderType =
itk::ImageFileReader<MovingImageType>
;
auto
fixedImageReader =
FixedImageReaderType::New
();
auto
movingImageReader =
MovingImageReaderType::New
();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
registration->SetFixedImage(fixedImageReader->GetOutput());
registration->SetMovingImage(movingImageReader->GetOutput());
fixedImageReader->Update();
// Software Guide : BeginLatex
//
// The \doxygen{Euler2DTransform} is initialized with 3 parameters,
// indicating the angle of rotation and the
// translation to be applied after rotation. The initialization is done
// by the \doxygen{CenteredTransformInitializer}.
// The transform initializer can operate in two modes, the first of
// which assumes that the
// anatomical objects to be registered are centered in their respective
// images. Hence the best initial guess for the registration is the one
// that superimposes those two centers.
// This second approach assumes that the moments of the anatomical
// objects are similar for both images and hence the best initial guess
// for registration is to superimpose both mass centers. The center of
// mass is computed from the moments obtained from the gray level values.
// Here we adopt the first approach. The \code{GeometryOn()} method
// toggles between the approaches.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
TransformInitializerType =
itk::CenteredTransformInitializer
<TransformType,
FixedImageType,
MovingImageType>;
auto
initializer =
TransformInitializerType::New
();
initializer->SetTransform(transform);
initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());
initializer->GeometryOn();
initializer->InitializeTransform();
// Software Guide : EndCodeSnippet
transform->SetAngle(0.0);
registration->SetInitialTransform(transform);
registration->InPlaceOn();
// Software Guide : BeginLatex
//
// The optimizer scales the metrics (the gradient in this case) by the
// scales during each iteration. Here we
// assume that the fixed and moving images are likely to be related by
// a translation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
OptimizerScalesType = OptimizerType::ScalesType;
OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());
constexpr
double
translationScale = 1.0 / 128.0;
optimizerScales[0] = 1.0;
optimizerScales[1] = translationScale;
optimizerScales[2] = translationScale;
optimizer->SetScales(optimizerScales);
optimizer->SetLearningRate(0.5);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfIterations(400);
// Software Guide : EndCodeSnippet
// One level registration process without shrinking and smoothing.
//
constexpr
unsigned
int
numberOfLevels = 1;
RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize(1);
shrinkFactorsPerLevel[0] = 1;
RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize(1);
smoothingSigmasPerLevel[0] = 0;
registration->SetNumberOfLevels(numberOfLevels);
registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
// Create the Command observer and register it with the optimizer.
//
auto
observer =
CommandIterationUpdate::New
();
optimizer->AddObserver(itk::IterationEvent(), observer);
try
{
registration->Update();
std::cout <<
"Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cout <<
"ExceptionObject caught !"
<< std::endl;
std::cout << err << std::endl;
return
EXIT_FAILURE;
}
using
ParametersType = TransformType::ParametersType;
ParametersType finalParameters = transform->GetParameters();
const
double
finalAngle = finalParameters[0];
const
double
finalTranslationX = finalParameters[1];
const
double
finalTranslationY = finalParameters[2];
const
double
rotationCenterX =
registration->GetOutput()->Get()->GetFixedParameters()[0];
const
double
rotationCenterY =
registration->GetOutput()->Get()->GetFixedParameters()[1];
const
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
const
double
bestValue = optimizer->GetValue();
// Print out results
//
const
double
finalAngleInDegrees = finalAngle * 180 /
itk::Math::pi
;
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Angle (radians) "
<< finalAngle << std::endl;
std::cout <<
" Angle (degrees) "
<< finalAngleInDegrees << std::endl;
std::cout <<
" Translation X = "
<< finalTranslationX << std::endl;
std::cout <<
" Translation Y = "
<< finalTranslationY << std::endl;
std::cout <<
" Fixed Center X = "
<< rotationCenterX << std::endl;
std::cout <<
" Fixed Center Y = "
<< rotationCenterY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
using
ResampleFilterType =
itk::ResampleImageFilter<MovingImageType, FixedImageType>
;
auto
resample =
ResampleFilterType::New
();
resample->SetTransform(transform);
resample->SetInput(movingImageReader->GetOutput());
const
FixedImageType::Pointer
fixedImage = fixedImageReader->GetOutput();
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
using
OutputPixelType =
unsigned
char;
using
OutputImageType =
itk::Image<OutputPixelType, Dimension>
;
using
CastFilterType =
itk::CastImageFilter<FixedImageType, OutputImageType>
;
using
WriterType =
itk::ImageFileWriter<OutputImageType>
;
auto
writer =
WriterType::New
();
auto
caster =
CastFilterType::New
();
writer->SetFileName(argv[3]);
caster->SetInput(resample->GetOutput());
writer->SetInput(caster->GetOutput());
writer->Update();
return
EXIT_SUCCESS;
}
// Software Guide : BeginLatex
//
// Let's execute this example over some of the images provided in
// \code{Examples/Data}, for example:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySlice.png}
// \item \code{BrainProtonDensitySliceR10X13Y17.png}
// \end{itemize}
//
// The second image is the result of intentionally rotating the first
// image by $10$ degrees and shifting it $13mm$ in $X$ and $17mm$ in
// $Y$. Both images have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingImageRegistration5}. The example
// yielded the following results.
//
// \begin{verbatim}
//
// Angle (radians) 0.174569
// Angle (degrees) 10.0021
// Translation X = 13.0958
// Translation Y = 15.9156
//
// \end{verbatim}
//
// These values match the true misalignment introduced in the moving image.
//
// Software Guide : EndLatex
AddImageFilter
Pixel-wise addition of two images.
itk::CastImageFilter
Casts input pixels to output pixel type.
Definition:
itkCastImageFilter.h:101
itk::CenteredTransformInitializer
CenteredTransformInitializer is a helper class intended to initialize the center of rotation and the ...
Definition:
itkCenteredTransformInitializer.h:62
itk::Command
Superclass for callback/observer methods.
Definition:
itkCommand.h:46
itk::Command::Execute
virtual void Execute(Object *caller, const EventObject &event)=0
itk::Euler2DTransform
Euler2DTransform of a vector space (e.g. space coordinates)
Definition:
itkEuler2DTransform.h:42
itk::EventObject
Abstraction of the Events used to communicating among filters and with GUIs.
Definition:
itkEventObject.h:59
itk::ExceptionObject
Standard exception handling object.
Definition:
itkExceptionObject.h:51
itk::ImageFileReader
Data source that reads image data from a single file.
Definition:
itkImageFileReader.h:76
itk::ImageFileWriter
Writes image data to a single file.
Definition:
itkImageFileWriter.h:91
itk::Image
Templated n-dimensional image class.
Definition:
itkImage.h:89
itk::MattesMutualInformationImageToImageMetricv4
Computes the mutual information between two images to be registered using the method of Mattes et al.
Definition:
itkMattesMutualInformationImageToImageMetricv4.h:105
itk::Object
Base class for most ITK classes.
Definition:
itkObject.h:62
itk::RegularStepGradientDescentOptimizerv4
Regular Step Gradient descent optimizer.
Definition:
itkRegularStepGradientDescentOptimizerv4.h:49
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition:
itkResampleImageFilter.h:91
itk::SmartPointer< Self >
New
static Pointer New()
Superclass
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
Definition:
itkAddImageFilter.h:90
Pointer
SmartPointer< Self > Pointer
Definition:
itkAddImageFilter.h:93
itkCastImageFilter.h
itkCenteredTransformInitializer.h
itkCommand.h
itkEuler2DTransform.h
itkImageFileReader.h
itkImageFileWriter.h
itkImageRegistrationMethodv4.h
itkMattesMutualInformationImageToImageMetricv4.h
itkMersenneTwisterRandomVariateGenerator.h
itkRegularStepGradientDescentOptimizerv4.h
itkResampleImageFilter.h
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition:
itkGTestTypedefsAndConstructors.h:44
itk::Math::pi
static constexpr double pi
Definition:
itkMath.h:66
itk::Command
class ITK_FORWARD_EXPORT Command
Definition:
itkObject.h:42
Generated on
unknown
for ITK by
1.9.3