ITK  6.0.0
Insight Toolkit
Examples/RegistrationITKv4/ImageRegistration1.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceShifted13x17y.png}
// OUTPUTS: {ImageRegistration1Output.png}
// OUTPUTS: {ImageRegistration1DifferenceAfter.png}
// OUTPUTS: {ImageRegistration1DifferenceBefore.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the image registration framework in
// Insight. It should be read as a ``Hello World'' for ITK registration.
// Instead of means to an end, this example should be read as a basic
// introduction to the elements typically involved when solving a problem
// of image registration.
//
// \index{itk::Image!Instantiation}
// \index{itk::Image!Header}
//
// A registration method requires the following set of components: two input
// images, a transform, a metric and an optimizer. Some of these components
// are parameterized by the image type for which the registration is intended.
// The following header files provide declarations of common types used for
// these components.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
class CommandIterationUpdate : public itk::Command
{
public:
using Self = CommandIterationUpdate;
itkNewMacro(Self);
protected:
CommandIterationUpdate() = default;
public:
using OptimizerPointer = const OptimizerType *;
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
auto optimizer = static_cast<OptimizerPointer>(object);
if (!itk::IterationEvent().CheckEvent(&event))
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " = ";
std::cout << optimizer->GetValue() << " : ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << "outputImagefile [differenceImageAfter]";
std::cerr << "[differenceImageBefore] [useEstimator]" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The type of each registration component should
// be instantiated first. We start by selecting the image
// dimension and the types to be used for representing image pixels.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr unsigned int Dimension = 2;
using PixelType = float;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The types of the input images are instantiated by the following lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using FixedImageType = itk::Image<PixelType, Dimension>;
using MovingImageType = itk::Image<PixelType, Dimension>;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The transform that will map the fixed image space into the moving image
// space is defined below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// An optimizer is required to explore the parameter space of the transform
// in search of optimal values of the metric.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The metric will compare how well the two images match each other. Metric
// types are usually templated over the image types as seen in
// the following type declaration.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using MetricType =
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration method type is instantiated using the types of the
// fixed and moving images as well as the output transform type. This class
// is responsible for interconnecting all the components that we have
// described so far.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using RegistrationType = itk::
ImageRegistrationMethodv4<FixedImageType, MovingImageType, TransformType>;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Each one of the registration components is created using its
// \code{New()} method and is assigned to its respective
// \doxygen{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto metric = MetricType::New();
auto optimizer = OptimizerType::New();
auto registration = RegistrationType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Each component is now connected to the instance of the registration
// method.
//
// \index{itk::RegistrationMethodv4!SetMetric()}
// \index{itk::RegistrationMethodv4!SetOptimizer()}
// \index{itk::RegistrationMethodv4!SetFixedImage()}
// \index{itk::RegistrationMethodv4!SetMovingImage()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In this example the transform object does not need to be created and
// passed to the registration method like above since the registration
// filter will instantiate an internal transform object using the transform
// type that is passed to it as a template parameter.
//
// Metric needs an interpolator to evaluate the intensities of the fixed
// and moving images at non-grid positions. The types of fixed and moving
// interpolators are declared here.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using FixedLinearInterpolatorType =
using MovingLinearInterpolatorType =
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, fixed and moving interpolators are created and passed to the
// metric. Since linear interpolators are used as default, we could skip
// the following step in this example.
//
// \index{itk::MeanSquaresImageToImageMetricv4!SetFixedInterpolator()}
// \index{itk::MeanSquaresImageToImageMetricv4!SetMovingInterpolator()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto fixedInterpolator = FixedLinearInterpolatorType::New();
auto movingInterpolator = MovingLinearInterpolatorType::New();
metric->SetFixedInterpolator(fixedInterpolator);
metric->SetMovingInterpolator(movingInterpolator);
// Software Guide : EndCodeSnippet
using FixedImageReaderType = itk::ImageFileReader<FixedImageType>;
using MovingImageReaderType = itk::ImageFileReader<MovingImageType>;
auto fixedImageReader = FixedImageReaderType::New();
auto movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
// Software Guide : BeginLatex
//
// In this example, the fixed and moving images are read from files. This
// requires the \doxygen{ImageRegistrationMethodv4} to acquire its inputs
// from the output of the readers.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetFixedImage(fixedImageReader->GetOutput());
registration->SetMovingImage(movingImageReader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now the registration process should be initialized. ITKv4 registration
// framework provides initial transforms for both fixed and moving images.
// These transforms can be used to setup an initial known correction of the
// misalignment between the virtual domain and fixed/moving image spaces.
// In this particular case, a translation transform is being used for
// initialization of the moving image space.
// The array of parameters for the initial moving transform is simply
// composed of the translation values along each dimension. Setting the
// values of the parameters to zero initializes the transform to an
// \emph{Identity} transform. Note that the array constructor requires the
// number of elements to be passed as an argument.
//
// \index{itk::TranslationTransform!GetNumberOfParameters()}
// \index{itk::RegistrationMethodv4!SetMovingInitialTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto movingInitialTransform = TransformType::New();
TransformType::ParametersType initialParameters(
movingInitialTransform->GetNumberOfParameters());
initialParameters[0] = 0.0; // Initial offset in mm along X
initialParameters[1] = 0.0; // Initial offset in mm along Y
movingInitialTransform->SetParameters(initialParameters);
registration->SetMovingInitialTransform(movingInitialTransform);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the registration filter this moving initial transform will be added
// to a composite transform that already includes an instantiation of the
// output optimizable transform; then, the resultant composite transform
// will be used by the optimizer to evaluate the metric values at each
// iteration.
//
// Despite this, the fixed initial transform does not contribute to the
// optimization process. It is only used to access the fixed image from the
// virtual image space where the metric evaluation happens.
//
// Virtual images are a new concept added to the ITKv4 registration
// framework, which potentially lets us to do the registration process in a
// physical domain totally different from the fixed and moving image
// domains. In fact, the region over which metric evaluation is performed
// is called virtual image domain. This domain defines the resolution at
// which the evaluation is performed, as well as the physical coordinate
// system.
//
// The virtual reference domain is taken from the ``virtual image''
// buffered region, and the input images should be accessed from this
// reference space using the fixed and moving initial transforms.
//
// The legacy intuitive registration framework can be considered as a
// special case where the virtual domain is the same as the fixed image
// domain. As this case practically happens in most of the real life
// applications, the virtual image is set to be the same as the fixed image
// by default. However, the user can define the virtual domain differently
// than the fixed image domain by calling either \code{SetVirtualDomain} or
// \code{SetVirtualDomainFromImage}.
//
// In this example, like the most examples of this chapter, the virtual
// image is considered the same as the fixed image. Since the registration
// process happens in the fixed image physical domain, the fixed initial
// transform maintains its default value of identity and does not need to
// be set.
//
// However, a ``Hello World!'' example should show all the basics, so
// all the registration components are explicitly set here.
//
// In the next section of this chapter, you will get a better understanding
// from behind the scenes of the registration process when the initial
// fixed transform is not identity.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto identityTransform = TransformType::New();
identityTransform->SetIdentity();
registration->SetFixedInitialTransform(identityTransform);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the above process shows only one way of initializing the
// registration configuration. Another option is to initialize the output
// optimizable transform directly. In this approach, a transform object is
// created, initialized, and then passed to the registration method via
// \code{SetInitialTransform()}. This approach is shown in
// section~\ref{sec:RigidRegistrationIn2D}.
//
// At this point the registration method is ready for execution. The
// optimizer is the component that drives the execution of the
// registration. However, the ImageRegistrationMethodv4 class
// orchestrates the ensemble to make sure that everything is in place
// before control is passed to the optimizer.
//
// It is usually desirable to fine tune the parameters of the optimizer.
// Each optimizer has particular parameters that must be interpreted in the
// context of the optimization strategy it implements. The optimizer used
// in this example is a variant of gradient descent that attempts to
// prevent it from taking steps that are too large. At each iteration, this
// optimizer will take a step along the direction of the
// \doxygen{ImageToImageMetricv4} derivative. Each time the direction of
// the derivative abruptly changes, the optimizer assumes that a local
// extrema has been passed and reacts by reducing the step length by a
// relaxation factor. The reducing factor should have a value between 0
// and 1. This factor is set to 0.5 by default, and it can be changed to a
// different value via \code{SetRelaxationFactor()}. Also, the default
// value for the initial step length is 1, and this value can be changed
// manually with the method \code{SetLearningRate()}.
//
// In addition to manual settings, the initial step size can also be
// estimated automatically, either at each iteration or only at the first
// iteration, by assigning a ScalesEstimator (as will be seen in later
// examples).
//
// After several reductions of the step length, the optimizer may be moving
// in a very restricted area of the transform parameter space. By the
// method \code{SetMinimumStepLength()}, the user can define how small the
// step length should be to consider convergence to have been reached. This
// is equivalent to defining the precision with which the final transform
// should be known. User can also set some other stop criteria manually
// like maximum number of iterations.
//
// In other gradient descent-based optimizers of the ITKv4 framework, such
// as \doxygen{GradientDescentLineSearchOptimizerv4} and
// \doxygen{ConjugateGradientLineSearchOptimizerv4}, the convergence
// criteria are set via \code{SetMinimumConvergenceValue()} which is
// computed based on the results of the last few iterations. The number of
// iterations involved in computations are defined by the convergence
// window size via \code{SetConvergenceWindowSize()} which is shown in
// later examples of this chapter.
//
// Also note that unlike the previous versions, ITKv4 optimizers do not
// have a
// ``maximize/minimize'' option to modify the effect of the metric
// derivatives. Each assigned metric is assumed to return a parameter
// derivative result that "improves" the optimization.
//
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetLearningRate()}
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetMinimumStepLength()}
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetRelaxationFactor()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetLearningRate(4);
optimizer->SetMinimumStepLength(0.001);
optimizer->SetRelaxationFactor(0.5);
// Software Guide : EndCodeSnippet
bool useEstimator = false;
if (argc > 6)
{
useEstimator = std::stoi(argv[6]) != 0;
}
if (useEstimator)
{
using ScalesEstimatorType =
auto scalesEstimator = ScalesEstimatorType::New();
scalesEstimator->SetMetric(metric);
scalesEstimator->SetTransformForward(true);
optimizer->SetScalesEstimator(scalesEstimator);
optimizer->SetDoEstimateLearningRateOnce(true);
}
// Software Guide : BeginLatex
//
// In case the optimizer never succeeds reaching the desired
// precision tolerance, it is prudent to establish a limit on the number of
// iterations to be performed. This maximum number is defined with the
// method \code{SetNumberOfIterations()}.
//
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetNumberOfIterations()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetNumberOfIterations(200);
// Software Guide : EndCodeSnippet
// Connect an observer
auto observer = CommandIterationUpdate::New();
optimizer->AddObserver(itk::IterationEvent(), observer);
// Software Guide : BeginLatex
//
// ITKv4 facilitates a multi-level registration framework whereby each
// stage is different in the resolution of its virtual space and the
// smoothness of the fixed and moving images. These criteria need to be
// defined before registration starts. Otherwise, the default values will
// be used. In this example, we run a simple registration in one level with
// no space shrinking or smoothing on the input data.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr unsigned int numberOfLevels = 1;
RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize(1);
shrinkFactorsPerLevel[0] = 1;
RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize(1);
smoothingSigmasPerLevel[0] = 0;
registration->SetNumberOfLevels(numberOfLevels);
registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration process is triggered by an invocation of the
// \code{Update()} method. If something goes wrong during the
// initialization or execution of the registration an exception will be
// thrown. We should therefore place the \code{Update()} method
// inside a \code{try/catch} block as illustrated in the following lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
registration->Update();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In a real life application, you may attempt to recover from the error by
// taking more effective actions in the catch block. Here we are simply
// printing out a message and then terminating the execution of the
// program.
//
//
// The result of the registration process is obtained using the
// \code{GetTransform()} method that returns a constant pointer to the
// output transform.
//
// \index{itk::ImageRegistrationMethodv4!GetTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const TransformType::ConstPointer transform = registration->GetTransform();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the case of the \doxygen{TranslationTransform}, there is a
// straightforward interpretation of the parameters. Each element of the
// array corresponds to a translation along one spatial dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::ParametersType finalParameters = transform->GetParameters();
const double TranslationAlongX = finalParameters[0];
const double TranslationAlongY = finalParameters[1];
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The optimizer can be queried for the actual number of iterations
// performed to reach convergence. The \code{GetCurrentIteration()}
// method returns this value. A large number of iterations may be an
// indication that the learning rate has been set too small, which
// is undesirable since it results in long computational times.
//
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!GetCurrentIteration()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The value of the image metric corresponding to the last set of
// parameters can be obtained with the \code{GetValue()} method of the
// optimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const double bestValue = optimizer->GetValue();
// Software Guide : EndCodeSnippet
// Print out results
//
std::cout << "Result = " << std::endl;
std::cout << " Translation X = " << TranslationAlongX << std::endl;
std::cout << " Translation Y = " << TranslationAlongY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over two of the images provided in
// \code{Examples/Data}:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceShifted13x17y.png}
// \end{itemize}
//
// The second image is the result of intentionally translating the first
// image by $(13,17)$ millimeters. Both images have unit-spacing and
// are shown in Figure \ref{fig:FixedMovingImageRegistration1}. The
// registration takes 20 iterations and the resulting transform parameters
// are:
//
// \begin{verbatim}
// Translation X = 13.0012
// Translation Y = 16.9999
// \end{verbatim}
//
// As expected, these values match quite well the misalignment that we
// intentionally introduced in the moving image.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceShifted13x17y}
// \itkcaption[Fixed and Moving images in registration framework]{Fixed and
// Moving image provided as input to the registration method.}
// \label{fig:FixedMovingImageRegistration1}
// \end{figure}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// It is common, as the last step of a registration task, to use the
// resulting transform to map the moving image into the fixed image space.
//
// Before the mapping process, notice that we have not used the direct
// initialization of the output transform in this example, so the
// parameters of the moving initial transform are not reflected in the
// output parameters of the registration filter. Hence, a composite
// transform is needed to concatenate both initial and output transforms
// together.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using CompositeTransformType = itk::CompositeTransform<double, Dimension>;
auto outputCompositeTransform = CompositeTransformType::New();
outputCompositeTransform->AddTransform(movingInitialTransform);
outputCompositeTransform->AddTransform(
registration->GetModifiableTransform());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now the mapping process is easily done with the
// \doxygen{ResampleImageFilter}. Please refer to
// Section~\ref{sec:ResampleImageFilter} for details on the use of this
// filter. First, a ResampleImageFilter type is instantiated using the
// image types. It is convenient to use the fixed image type as the output
// type since it is likely that the transformed moving image will be
// compared with the fixed image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ResampleFilterType =
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// A resampling filter is created and the moving image is connected as
// its input.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto resampler = ResampleFilterType::New();
resampler->SetInput(movingImageReader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The created output composite transform is also passed as input to the
// resampling filter.
//
// \index{itk::ImageRegistrationMethod!Resampling image}
// \index{itk::ImageRegistrationMethod!Pipeline}
// \index{itk::ImageRegistrationMethod!DataObjectDecorator}
// \index{itk::ImageRegistrationMethod!GetOutput()}
// \index{itk::DataObjectDecorator!Use in Registration}
// \index{itk::DataObjectDecorator!Get()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetTransform(outputCompositeTransform);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As described in Section \ref{sec:ResampleImageFilter}, the
// ResampleImageFilter requires additional parameters to be specified, in
// particular, the spacing, origin and size of the output image. The
// default pixel value is also set to a distinct gray level in order to
// highlight the regions that are mapped outside of the moving image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resampler->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resampler->SetOutputOrigin(fixedImage->GetOrigin());
resampler->SetOutputSpacing(fixedImage->GetSpacing());
resampler->SetOutputDirection(fixedImage->GetDirection());
resampler->SetDefaultPixelValue(100);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration1Output}
// \includegraphics[width=0.32\textwidth]{ImageRegistration1DifferenceBefore}
// \includegraphics[width=0.32\textwidth]{ImageRegistration1DifferenceAfter}
// \itkcaption[HelloWorld registration output images]{Mapped moving image
// and its difference with the fixed image before and after registration}
// \label{fig:ImageRegistration1Output}
// \end{figure}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The output of the filter is passed to a writer that will store the
// image in a file. An \doxygen{CastImageFilter} is used to convert the
// pixel type of the resampled image to the final type used by the
// writer. The cast and writer filters are instantiated below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using OutputPixelType = unsigned char;
using OutputImageType = itk::Image<OutputPixelType, Dimension>;
using CastFilterType =
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filters are created by invoking their \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto writer = WriterType::New();
auto caster = CastFilterType::New();
// Software Guide : EndCodeSnippet
writer->SetFileName(argv[3]);
// Software Guide : BeginLatex
//
// The filters are connected together and the \code{Update()} method of the
// writer is invoked in order to trigger the execution of the pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
caster->SetInput(resampler->GetOutput());
writer->SetInput(caster->GetOutput());
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=\textwidth]{ImageRegistration1Pipeline}
// \itkcaption[Pipeline structure of the registration example]{Pipeline
// structure of the registration example.}
// \label{fig:ImageRegistration1Pipeline}
// \end{figure}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The fixed image and the transformed moving image can easily be compared
// using the \doxygen{SubtractImageFilter}. This pixel-wise filter computes
// the difference between homologous pixels of its two input images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using DifferenceFilterType =
auto difference = DifferenceFilterType::New();
difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(resampler->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the use of subtraction as a method for comparing the images is
// appropriate here because we chose to represent the images using a pixel
// type \code{float}. A different filter would have been used if the pixel
// type of the images were any of the \code{unsigned} integer types.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Since the differences between the two images may correspond to very low
// values of intensity, we rescale those intensities with a
// \doxygen{RescaleIntensityImageFilter} in order to make them more
// visible. This rescaling will also make it possible to visualize the
// negative values even if we save the difference image in a file format
// that only supports unsigned pixel values\footnote{This is the case of
// PNG, BMP, JPEG and TIFF among other common file formats.}. We also
// reduce the \code{DefaultPixelValue} to ``1'' in order to prevent that
// value from absorbing the dynamic range of the differences between the
// two images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using RescalerType =
auto intensityRescaler = RescalerType::New();
intensityRescaler->SetInput(difference->GetOutput());
intensityRescaler->SetOutputMinimum(0);
intensityRescaler->SetOutputMaximum(255);
resampler->SetDefaultPixelValue(1);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Its output can be passed to another writer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto writer2 = WriterType::New();
writer2->SetInput(intensityRescaler->GetOutput());
// Software Guide : EndCodeSnippet
if (argc > 4)
{
writer2->SetFileName(argv[4]);
writer2->Update();
}
// Software Guide : BeginLatex
//
// For the purpose of comparison, the difference between the fixed image
// and the moving image before registration can also be computed by simply
// setting the transform to an identity transform. Note that the resampling
// is still necessary because the moving image does not necessarily have
// the same spacing, origin and number of pixels as the fixed image.
// Therefore a pixel-by-pixel operation cannot in general be performed. The
// resampling process with an identity transform will ensure that we have a
// representation of the moving image in the grid of the fixed image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetTransform(identityTransform);
// Software Guide : EndCodeSnippet
if (argc > 5)
{
writer2->SetFileName(argv[5]);
writer2->Update();
}
// Software Guide : BeginLatex
//
// The complete pipeline structure of the current example is presented in
// Figure~\ref{fig:ImageRegistration1Pipeline}. The components of the
// registration method are depicted as well. Figure
// \ref{fig:ImageRegistration1Output} (left) shows the result of resampling
// the moving image in order to map it onto the fixed image space. The top
// and right borders of the image appear in the gray level selected with
// the \code{SetDefaultPixelValue()} in the ResampleImageFilter. The center
// image shows the difference between the fixed image and the original
// moving image (i.e. the difference before the registration is
// performed). The right image shows the difference between the fixed image
// and the transformed moving image (i.e. after the registration has
// been performed). Both difference images have been rescaled in intensity
// in order to highlight those pixels where differences exist. Note that
// the final registration is still off by a fraction of a pixel, which
// causes bands around edges of anatomical structures to appear in the
// difference image. A perfect registration would have produced a null
// difference image.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[height=0.44\textwidth]{ImageRegistration1TraceTranslations}
// \includegraphics[height=0.44\textwidth]{ImageRegistration1TraceMetric}
// \itkcaption[Trace of translations and metrics during registration]{The
// sequence of translations and metric values at each iteration of the
// optimizer.} \label{fig:ImageRegistration1Trace} \end{figure}
//
// It is always useful to keep in mind that registration is essentially an
// optimization problem. Figure \ref{fig:ImageRegistration1Trace} helps to
// reinforce this notion by showing the trace of translations and values of
// the image metric at each iteration of the optimizer. It can be seen from
// the top figure that the step length is reduced progressively as the
// optimizer gets closer to the metric extrema. The bottom plot clearly
// shows how the metric value decreases as the optimization advances. The
// log plot helps to highlight the normal oscillations of the optimizer
// around the extrema value.
//
// In this section, we used a very simple example to introduce the basic
// components of a registration process in ITKv4. However, studying this
// example alone is not enough to start using the
// \doxygen{ImageRegistrationMethodv4}. In order to choose the best
// registration practice for a specific application, knowledge of other
// registration method instantiations and their capabilities are required.
// For example, direct initialization of the output optimizable transform
// is shown in section~\ref{sec:RigidRegistrationIn2D}. This method can
// simplify the registration process in many cases. Also, multi-resolution
// and multistage registration approaches are illustrated in
// sections~\ref{sec:MultiResolutionRegistration} and
// ~\ref{sec:MultiStageRegistration}.
// These examples illustrate the flexibility in the usage of ITKv4
// registration method framework that can help to provide faster and more
// reliable registration processes.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
Pixel-wise addition of two images.
Casts input pixels to output pixel type.
Superclass for callback/observer methods.
Definition: itkCommand.h:46
virtual void Execute(Object *caller, const EventObject &event)=0
This class contains a list of transforms and concatenates them by composition.
Abstraction of the Events used to communicating among filters and with GUIs.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
Templated n-dimensional image class.
Definition: itkImage.h:89
Linearly interpolate an image at specified positions.
Class implementing a mean squares metric.
Base class for most ITK classes.
Definition: itkObject.h:62
Registration helper class for estimating scales of transform parameters a step sizes,...
Resample an image via a coordinate transform.
Applies a linear transformation to the intensity levels of the input Image.
Pixel-wise subtraction of two images.
Translation transformation of a vector space (e.g. space coordinates)
SmartPointer< const Self > ConstPointer
static Pointer New()
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
class ITK_FORWARD_EXPORT Command
Definition: itkObject.h:42