ITK
6.0.0
Insight Toolkit
Examples/RegistrationITKv4/ImageRegistration7.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceR10X13Y17S12.png}
// OUTPUTS: {ImageRegistration7Output.png}
// OUTPUTS: {ImageRegistration7DifferenceBefore.png}
// OUTPUTS: {ImageRegistration7DifferenceAfter.png}
// ARGUMENTS: 1.0 1.0 0.0
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{Similarity2DTransform}
// class for performing registration in $2D$. The example code is for
// the most part identical to the code presented in Section
// \ref{sec:InitializingRegistrationWithMoments}. The main difference is the
// use of \doxygen{Similarity2DTransform} here rather than the
// \doxygen{Euler2DTransform} class.
//
// A similarity transform can be seen as a composition of rotations,
// translations and uniform $\left(\text{isotropic}\right)$ scaling. It
// preserves angles and maps lines into
// lines. This transform is implemented in the toolkit as deriving from a
// rigid $2D$ transform and with a scale parameter added.
//
// When using this transform, attention should be paid to the fact that
// scaling and translations are not independent. In the same way that
// rotations can locally be seen as translations, scaling also results in
// local displacements. Scaling is performed in general with respect to the
// origin of coordinates. However, we already saw how ambiguous that could be
// in the case of rotations. For this reason, this transform also allows users
// to setup a specific center. This center is used both for rotation and
// scaling.
//
//
// \index{itk::Similarity2DTransform}
//
// Software Guide : EndLatex
#include "
itkImageRegistrationMethodv4.h
"
#include "
itkMeanSquaresImageToImageMetricv4.h
"
#include "
itkRegularStepGradientDescentOptimizerv4.h
"
#include "
itkCenteredTransformInitializer.h
"
// Software Guide : BeginLatex
//
// In addition to the headers included in previous examples, here the
// following header must be included.
//
// \index{itk::Similarity2DTransform!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkSimilarity2DTransform.h
"
// Software Guide : EndCodeSnippet
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
#include "
itkSubtractImageFilter.h
"
#include "
itkRescaleIntensityImageFilter.h
"
#include "
itkIdentityTransform.h
"
// The following section of code implements a Command observer
// that will monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
using
Self
= CommandIterationUpdate;
using
Superclass
=
itk::Command
;
using
Pointer
=
itk::SmartPointer<Self>
;
itkNewMacro(
Self
);
protected
:
CommandIterationUpdate() =
default
;
public
:
using
OptimizerType =
itk::RegularStepGradientDescentOptimizerv4<double>
;
using
OptimizerPointer =
const
OptimizerType *;
void
Execute
(
itk::Object
* caller,
const
itk::EventObject
& event)
override
{
Execute
((
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
override
{
auto
optimizer =
static_cast<
OptimizerPointer
>
(object);
if
(!itk::IterationEvent().CheckEvent(&event))
{
return
;
}
std::cout << optimizer->GetCurrentIteration() <<
" "
;
std::cout << optimizer->GetValue() <<
" "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(
int
argc,
char
* argv[])
{
if
(argc < 4)
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
" outputImagefile [differenceBeforeRegistration] "
;
std::cerr <<
" [differenceAfterRegistration] "
;
std::cerr <<
" [steplength] "
;
std::cerr <<
" [initialScaling] [initialAngle] "
;
std::cerr << std::endl;
return
EXIT_FAILURE;
}
constexpr
unsigned
int
Dimension
= 2;
using
PixelType = float;
using
FixedImageType =
itk::Image<PixelType, Dimension>
;
using
MovingImageType =
itk::Image<PixelType, Dimension>
;
// Software Guide : BeginLatex
//
// The Transform class is instantiated using the code below. The only
// template parameter of this class is the representation type of the
// space coordinates.
//
// \index{itk::Similarity2DTransform!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
TransformType =
itk::Similarity2DTransform<double>
;
// Software Guide : EndCodeSnippet
using
OptimizerType =
itk::RegularStepGradientDescentOptimizerv4<double>
;
using
MetricType =
itk::MeanSquaresImageToImageMetricv4<FixedImageType, MovingImageType>
;
using
RegistrationType = itk::
ImageRegistrationMethodv4<FixedImageType, MovingImageType, TransformType>;
auto
metric =
MetricType::New
();
auto
optimizer =
OptimizerType::New
();
auto
registration =
RegistrationType::New
();
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
// Software Guide : BeginLatex
//
// As before, the transform object is constructed and initialized before it
// is passed to the registration filter.
//
// \index{itk::Similarity2DTransform!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto
transform =
TransformType::New
();
// Software Guide : EndCodeSnippet
using
FixedImageReaderType =
itk::ImageFileReader<FixedImageType>
;
using
MovingImageReaderType =
itk::ImageFileReader<MovingImageType>
;
auto
fixedImageReader =
FixedImageReaderType::New
();
auto
movingImageReader =
MovingImageReaderType::New
();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
registration->SetFixedImage(fixedImageReader->GetOutput());
registration->SetMovingImage(movingImageReader->GetOutput());
// Software Guide : BeginLatex
//
// In this example, we again use the helper class
// \doxygen{CenteredTransformInitializer} to compute a reasonable
// value for the initial center of rotation and scaling along with
// an initial translation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
TransformInitializerType =
itk::CenteredTransformInitializer
<TransformType,
FixedImageType,
MovingImageType>;
auto
initializer =
TransformInitializerType::New
();
initializer->SetTransform(transform);
initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());
initializer->MomentsOn();
initializer->InitializeTransform();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The remaining parameters of the transform are initialized below.
//
// \index{itk::Similarity2DTransform!SetScale()}
// \index{itk::Similarity2DTransform!SetAngle()}
//
// Software Guide : EndLatex
double
initialScale = 1.0;
if
(argc > 7)
{
initialScale = std::stod(argv[7]);
}
double
initialAngle = 0.0;
if
(argc > 8)
{
initialAngle = std::stod(argv[8]);
}
// Software Guide : BeginCodeSnippet
transform->SetScale(initialScale);
transform->SetAngle(initialAngle);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now the initialized transform object will be set to the registration
// method, and its initial parameters are used to initialize the
// registration process.
//
// Also, by calling the \code{InPlaceOn()} method, this initialized
// transform will be the output transform
// object or ``grafted'' to the output of the registration process.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetInitialTransform(transform);
registration->InPlaceOn();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Keeping in mind that the scale of units in scaling, rotation and
// translation are quite different, we take advantage of the scaling
// functionality provided by the optimizers. We know that the first element
// of the parameters array corresponds to the scale factor, the second
// corresponds to the angle, third and fourth are the remaining
// translation. We use henceforth small factors in the scales
// associated with translations.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
OptimizerScalesType = OptimizerType::ScalesType;
OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());
constexpr
double
translationScale = 1.0 / 100.0;
optimizerScales[0] = 10.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = translationScale;
optimizerScales[3] = translationScale;
optimizer->SetScales(optimizerScales);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also set the ordinary parameters of the optimization method. In this
// case we are using a
// \doxygen{RegularStepGradientDescentOptimizerv4}. Below we define the
// optimization parameters, i.e. initial learning rate (step length),
// minimal step length and number of iterations. The last two act as
// stopping criteria for the optimization.
//
// Software Guide : EndLatex
double
steplength = 1.0;
if
(argc > 6)
{
steplength = std::stod(argv[6]);
}
// Software Guide : BeginCodeSnippet
optimizer->SetLearningRate(steplength);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfIterations(500);
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
auto
observer =
CommandIterationUpdate::New
();
optimizer->AddObserver(itk::IterationEvent(), observer);
// One level registration process without shrinking and smoothing.
//
constexpr
unsigned
int
numberOfLevels = 1;
RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize(1);
shrinkFactorsPerLevel[0] = 1;
RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize(1);
smoothingSigmasPerLevel[0] = 0;
registration->SetNumberOfLevels(numberOfLevels);
registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
try
{
registration->Update();
std::cout <<
"Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
TransformType::ParametersType finalParameters = transform->GetParameters();
const
double
finalScale = finalParameters[0];
const
double
finalAngle = finalParameters[1];
const
double
finalTranslationX = finalParameters[2];
const
double
finalTranslationY = finalParameters[3];
const
double
rotationCenterX =
registration->GetOutput()->Get()->GetFixedParameters()[0];
const
double
rotationCenterY =
registration->GetOutput()->Get()->GetFixedParameters()[1];
const
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
const
double
bestValue = optimizer->GetValue();
// Print out results
//
const
double
finalAngleInDegrees = finalAngle * 180.0 /
itk::Math::pi
;
std::cout << std::endl;
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Scale = "
<< finalScale << std::endl;
std::cout <<
" Angle (radians) = "
<< finalAngle << std::endl;
std::cout <<
" Angle (degrees) = "
<< finalAngleInDegrees << std::endl;
std::cout <<
" Translation X = "
<< finalTranslationX << std::endl;
std::cout <<
" Translation Y = "
<< finalTranslationY << std::endl;
std::cout <<
" Fixed Center X = "
<< rotationCenterX << std::endl;
std::cout <<
" Fixed Center Y = "
<< rotationCenterY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over some of the images provided in
// \code{Examples/Data}, for example:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceR10X13Y17S12.png}
// \end{itemize}
//
// The second image is the result of intentionally rotating the first image
// by $10$ degrees, scaling by $1/1.2$ and then translating by $(-13,-17)$.
// Both images have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingImageRegistration7}. The registration takes $53$
// iterations and produces:
//
// \begin{center}
// \begin{verbatim}
// [0.833237, -0.174511, -12.8065, -12.7244 ]
// \end{verbatim}
// \end{center}
//
// That are interpreted as
//
// \begin{itemize}
// \item Scale factor = $0.833237$
// \item Angle = $-0.174511$ radians
// \item Translation = $( -12.8065, -12.7244 )$ millimeters
// \end{itemize}
//
//
// These values approximate the misalignment intentionally introduced into
// the moving image. Since $10$ degrees is about $0.174532$ radians.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceR10X13Y17S12}
// \itkcaption[Fixed and Moving image registered with
// Similarity2DTransform]{Fixed and Moving image provided as input to the
// registration method using the Similarity2D transform.}
// \label{fig:FixedMovingImageRegistration7}
// \end{figure}
//
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration7Output}
// \includegraphics[width=0.32\textwidth]{ImageRegistration7DifferenceBefore}
// \includegraphics[width=0.32\textwidth]{ImageRegistration7DifferenceAfter}
// \itkcaption[Output of the Similarity2DTransform registration]{Resampled
// moving image (left). Differences between fixed and
// moving images, before (center) and after (right) registration with the
// Similarity2D transform.}
// \label{fig:ImageRegistration7Outputs}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration7Outputs} shows the output of the
// registration. The right image shows the squared magnitude of pixel
// differences between the fixed image and the resampled moving image.
//
// \begin{figure}
// \center
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceMetric}
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceAngle}
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceScale}
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceTranslations}
// \itkcaption[Similarity2DTransform registration plots]{Plots of the
// Metric, rotation angle, scale factor, and translations during the
// registration using Similarity2D transform.}
// \label{fig:ImageRegistration7Plots}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration7Plots} shows the plots of the main
// output parameters of the registration process. The metric values at
// every iteration are shown on the left. The rotation angle and scale
// factor values are shown in the two center plots while the translation
// components of the registration are presented in the plot on the right.
//
// Software Guide : EndLatex
using
ResampleFilterType =
itk::ResampleImageFilter<MovingImageType, FixedImageType>
;
auto
resampler =
ResampleFilterType::New
();
resampler->SetTransform(transform);
resampler->SetInput(movingImageReader->GetOutput());
const
FixedImageType::Pointer
fixedImage = fixedImageReader->GetOutput();
resampler->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resampler->SetOutputOrigin(fixedImage->GetOrigin());
resampler->SetOutputSpacing(fixedImage->GetSpacing());
resampler->SetOutputDirection(fixedImage->GetDirection());
resampler->SetDefaultPixelValue(100);
using
OutputPixelType =
unsigned
char;
using
OutputImageType =
itk::Image<OutputPixelType, Dimension>
;
using
CastFilterType =
itk::CastImageFilter<FixedImageType, OutputImageType>
;
using
WriterType =
itk::ImageFileWriter<OutputImageType>
;
auto
writer =
WriterType::New
();
auto
caster =
CastFilterType::New
();
writer->SetFileName(argv[3]);
caster->SetInput(resampler->GetOutput());
writer->SetInput(caster->GetOutput());
writer->Update();
using
DifferenceFilterType =
itk::SubtractImageFilter<FixedImageType, FixedImageType, FixedImageType>
;
auto
difference =
DifferenceFilterType::New
();
using
RescalerType =
itk::RescaleIntensityImageFilter<FixedImageType, OutputImageType>
;
auto
intensityRescaler =
RescalerType::New
();
intensityRescaler->SetInput(difference->GetOutput());
intensityRescaler->SetOutputMinimum(0);
intensityRescaler->SetOutputMaximum(255);
difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(resampler->GetOutput());
resampler->SetDefaultPixelValue(1);
auto
writer2 =
WriterType::New
();
writer2->SetInput(intensityRescaler->GetOutput());
// Compute the difference image between the
// fixed and resampled moving image.
if
(argc > 5)
{
writer2->SetFileName(argv[5]);
writer2->Update();
}
using
IdentityTransformType =
itk::IdentityTransform<double, Dimension>
;
auto
identity =
IdentityTransformType::New
();
// Compute the difference image between the
// fixed and moving image before registration.
if
(argc > 4)
{
resampler->SetTransform(identity);
writer2->SetFileName(argv[4]);
writer2->Update();
}
return
EXIT_SUCCESS;
}
AddImageFilter
Pixel-wise addition of two images.
itk::CastImageFilter
Casts input pixels to output pixel type.
Definition:
itkCastImageFilter.h:101
itk::CenteredTransformInitializer
CenteredTransformInitializer is a helper class intended to initialize the center of rotation and the ...
Definition:
itkCenteredTransformInitializer.h:62
itk::Command
Superclass for callback/observer methods.
Definition:
itkCommand.h:46
itk::Command::Execute
virtual void Execute(Object *caller, const EventObject &event)=0
itk::EventObject
Abstraction of the Events used to communicating among filters and with GUIs.
Definition:
itkEventObject.h:59
itk::ExceptionObject
Standard exception handling object.
Definition:
itkExceptionObject.h:51
itk::IdentityTransform
Implementation of an Identity Transform.
Definition:
itkIdentityTransform.h:51
itk::ImageFileReader
Data source that reads image data from a single file.
Definition:
itkImageFileReader.h:76
itk::ImageFileWriter
Writes image data to a single file.
Definition:
itkImageFileWriter.h:91
itk::Image
Templated n-dimensional image class.
Definition:
itkImage.h:89
itk::MeanSquaresImageToImageMetricv4
Class implementing a mean squares metric.
Definition:
itkMeanSquaresImageToImageMetricv4.h:48
itk::Object
Base class for most ITK classes.
Definition:
itkObject.h:62
itk::RegularStepGradientDescentOptimizerv4
Regular Step Gradient descent optimizer.
Definition:
itkRegularStepGradientDescentOptimizerv4.h:49
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition:
itkResampleImageFilter.h:91
itk::RescaleIntensityImageFilter
Applies a linear transformation to the intensity levels of the input Image.
Definition:
itkRescaleIntensityImageFilter.h:138
itk::Similarity2DTransform< double >
itk::SmartPointer< Self >
itk::SubtractImageFilter
Pixel-wise subtraction of two images.
Definition:
itkSubtractImageFilter.h:70
New
static Pointer New()
Superclass
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
Definition:
itkAddImageFilter.h:90
Pointer
SmartPointer< Self > Pointer
Definition:
itkAddImageFilter.h:93
itkCastImageFilter.h
itkCenteredTransformInitializer.h
itkCommand.h
itkIdentityTransform.h
itkImageFileReader.h
itkImageFileWriter.h
itkImageRegistrationMethodv4.h
itkMeanSquaresImageToImageMetricv4.h
itkRegularStepGradientDescentOptimizerv4.h
itkResampleImageFilter.h
itkRescaleIntensityImageFilter.h
itkSimilarity2DTransform.h
itkSubtractImageFilter.h
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition:
itkGTestTypedefsAndConstructors.h:44
itk::Math::pi
static constexpr double pi
Definition:
itkMath.h:66
itk::Command
class ITK_FORWARD_EXPORT Command
Definition:
itkObject.h:42
Generated on
unknown
for ITK by
1.9.3