ITK  6.0.0
Insight Toolkit
Examples/Segmentation/CurvesLevelSetImageFilter.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// WORK IN PROGRESS: THIS WAS TAKEN FROM THE GEODESIC ACTIVE CONTOURS.
// IT NEED TO BE REWORKED TO MATCH THE CURVESLEVELSET
// FILTER.
//
// The use of the \doxygen{CurvesLevelSetImageFilter} is
// illustrated in the following example. The implementation of this filter in
// ITK is based on the paper by Caselles \cite{Caselles1997}. This
// implementation extends the functionality of the
// \doxygen{ShapeDetectionLevelSetImageFilter} by the addition of a third
// advection term which attracts the level set to the object boundaries.
//
// CurvesLevelSetImageFilter expects two inputs. The first is
// an initial level set in the form of an \doxygen{Image}. The second input
// is a feature image. For this algorithm, the feature image is an edge
// potential image that basically follows the same rules used for the
// ShapeDetectionLevelSetImageFilter discussed in
// Section~\ref{sec:ShapeDetectionLevelSetFilter}. The configuration of this
// example is quite similar to the example on the use of the
// ShapeDetectionLevelSetImageFilter. We omit most of the redundant
// description. A look at the code will reveal the great degree of similarity
// between both examples.
//
// \begin{figure} \center
// \includegraphics[width=\textwidth]{CurvesCollaborationDiagram1}
// \itkcaption[CurvesLevelSetImageFilter collaboration
// diagram]{Collaboration diagram for the CurvesLevelSetImageFilter
// applied to a segmentation task.}
// \label{fig:CurvesCollaborationDiagram}
// \end{figure}
//
// Figure~\ref{fig:CurvesCollaborationDiagram} shows the major
// components involved in the application of the
// CurvesLevelSetImageFilter to a segmentation task.
// This pipeline is quite similar to the one used by the
// ShapeDetectionLevelSetImageFilter in
// section~\ref{sec:ShapeDetectionLevelSetFilter}.
//
// The pipeline involves a first stage of smoothing using the
// \doxygen{CurvatureAnisotropicDiffusionImageFilter}. The smoothed image is
// passed as the input to the
// \doxygen{GradientMagnitudeRecursiveGaussianImageFilter} and then to the
// \doxygen{SigmoidImageFilter} in order to produce the edge potential image.
// A set of user-provided seeds is passed to a
// \doxygen{FastMarchingImageFilter} in order to compute the distance map. A
// constant value is subtracted from this map in order to obtain a level set
// in which the \emph{zero set} represents the initial contour. This level
// set is also passed as input to the
// CurvesLevelSetImageFilter.
//
// Finally, the level set generated by the
// CurvesLevelSetImageFilter is passed to a
// \doxygen{BinaryThresholdImageFilter} in order to produce a binary mask
// representing the segmented object.
//
// Let's start by including the headers of the main filters involved in the
// preprocessing.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
int
main(int argc, char * argv[])
{
if (argc < 10)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage outputImage";
std::cerr << " seedX seedY InitialDistance";
std::cerr << " Sigma SigmoidAlpha SigmoidBeta";
std::cerr << " PropagationScaling" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We now define the image type using a particular pixel type and
// dimension. In this case the \code{float} type is used for the pixels
// due to the requirements of the smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using InternalPixelType = float;
constexpr unsigned int Dimension = 2;
using InternalImageType = itk::Image<InternalPixelType, Dimension>;
// Software Guide : EndCodeSnippet
// The following lines instantiate the thresholding filter that will
// process the final level set at the output of the
// CurvesLevelSetImageFilter.
//
using OutputPixelType = unsigned char;
using OutputImageType = itk::Image<OutputPixelType, Dimension>;
using ThresholdingFilterType =
auto thresholder = ThresholdingFilterType::New();
thresholder->SetLowerThreshold(-1000.0);
thresholder->SetUpperThreshold(0.0);
thresholder->SetOutsideValue(0);
thresholder->SetInsideValue(255);
// We instantiate reader and writer types in the following lines.
//
auto reader = ReaderType::New();
auto writer = WriterType::New();
reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);
// The RescaleIntensityImageFilter type is declared below. This filter will
// renormalize image before sending them to writers.
//
using CastFilterType =
// The \doxygen{CurvatureAnisotropicDiffusionImageFilter} type is
// instantiated using the internal image type.
//
using SmoothingFilterType =
InternalImageType>;
auto smoothing = SmoothingFilterType::New();
// The types of the
// GradientMagnitudeRecursiveGaussianImageFilter and
// SigmoidImageFilter are instantiated using the internal image
// type.
//
using GradientFilterType =
InternalImageType>;
using SigmoidFilterType =
auto gradientMagnitude = GradientFilterType::New();
auto sigmoid = SigmoidFilterType::New();
// The minimum and maximum values of the SigmoidImageFilter output
// are defined with the methods \code{SetOutputMinimum()} and
// \code{SetOutputMaximum()}. In our case, we want these two values to be
// $0.0$ and $1.0$ respectively in order to get a nice speed image to feed
// the \code{FastMarchingImageFilter}. Additional details on the user of
// the \doxygen{SigmoidImageFilter} are presented in
// section~\ref{sec:IntensityNonLinearMapping}.
sigmoid->SetOutputMinimum(0.0);
sigmoid->SetOutputMaximum(1.0);
// We declare now the type of the FastMarchingImageFilter that
// will be used to generate the initial level set in the form of a distance
// map.
//
using FastMarchingFilterType =
// Next we construct one filter of this class using the \code{New()}
// method.
//
auto fastMarching = FastMarchingFilterType::New();
// Software Guide : BeginLatex
//
// In the following lines we instantiate the type of the
// CurvesLevelSetImageFilter and create an object of this
// type using the \code{New()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using CurvesFilterType =
auto geodesicActiveContour = CurvesFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// For the CurvesLevelSetImageFilter, scaling parameters
// are used to trade off between the propagation (inflation), the
// curvature (smoothing) and the advection terms. These parameters are set
// using methods \code{SetPropagationScaling()},
// \code{SetCurvatureScaling()} and \code{SetAdvectionScaling()}. In this
// example, we will set the curvature and advection scales to one and let
// the propagation scale be a command-line argument.
//
// \index{itk::Geodesic\-Active\-Contour\-LevelSet\-Image\-Filter!SetPropagationScaling()}
// \index{itk::Segmentation\-Level\-Set\-Image\-Filter!SetPropagationScaling()}
// \index{itk::Geodesic\-Active\-Contour\-LevelSet\-Image\-Filter!SetCurvatureScaling()}
// \index{itk::Segmentation\-Level\-Set\-Image\-Filter!SetCurvatureScaling()}
// \index{itk::Geodesic\-Active\-Contour\-LevelSet\-Image\-Filter!SetAdvectionScaling()}
// \index{itk::Segmentation\-Level\-Set\-Image\-Filter!SetAdvectionScaling()}
//
// Software Guide : EndLatex
const double propagationScaling = std::stod(argv[9]);
// Software Guide : BeginCodeSnippet
geodesicActiveContour->SetPropagationScaling(propagationScaling);
geodesicActiveContour->SetCurvatureScaling(1.0);
geodesicActiveContour->SetAdvectionScaling(1.0);
// Software Guide : EndCodeSnippet
// Once activated the level set evolution will stop if the convergence
// criteria or if the maximum number of iterations is reached. The
// convergence criteria is defined in terms of the root mean squared (RMS)
// change in the level set function. The evolution is said to have
// converged if the RMS change is below a user specified threshold. In a
// real application is desirable to couple the evolution of the zero set
// to a visualization module allowing the user to follow the evolution of
// the zero set. With this feedback, the user may decide when to stop the
// algorithm before the zero set leaks through the regions of low gradient
// in the contour of the anatomical structure to be segmented.
geodesicActiveContour->SetMaximumRMSError(0.02);
geodesicActiveContour->SetNumberOfIterations(800);
// Software Guide : BeginLatex
//
// The filters are now connected in a pipeline indicated in
// Figure~\ref{fig:CurvesCollaborationDiagram} using the
// following lines:
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetInput(reader->GetOutput());
gradientMagnitude->SetInput(smoothing->GetOutput());
sigmoid->SetInput(gradientMagnitude->GetOutput());
geodesicActiveContour->SetInput(fastMarching->GetOutput());
geodesicActiveContour->SetFeatureImage(sigmoid->GetOutput());
thresholder->SetInput(geodesicActiveContour->GetOutput());
writer->SetInput(thresholder->GetOutput());
// Software Guide : EndCodeSnippet
// The CurvatureAnisotropicDiffusionImageFilter requires a couple of
// parameter to be defined. The following are typical values for $2D$
// images. However they may have to be adjusted depending on the amount of
// noise present in the input image. This filter has been discussed in
// section~\ref{sec:GradientAnisotropicDiffusionImageFilter}.
smoothing->SetTimeStep(0.125);
smoothing->SetNumberOfIterations(5);
smoothing->SetConductanceParameter(9.0);
// The GradientMagnitudeRecursiveGaussianImageFilter performs the
// equivalent of a convolution with a Gaussian kernel, followed by a
// derivative operator. The sigma of this Gaussian can be used to control
// the range of influence of the image edges. This filter has been
// discussed in
// Section~\ref{sec:GradientMagnitudeRecursiveGaussianImageFilter}.
const double sigma = std::stod(argv[6]);
gradientMagnitude->SetSigma(sigma);
// The SigmoidImageFilter requires two parameters that define the linear
// transformation to be applied to the sigmoid argument. This parameters
// have been discussed in Sections~\ref{sec:IntensityNonLinearMapping} and
// \ref{sec:FastMarchingImageFilter}.
const double alpha = std::stod(argv[7]);
const double beta = std::stod(argv[8]);
sigmoid->SetAlpha(alpha);
sigmoid->SetBeta(beta);
// The FastMarchingImageFilter requires the user to provide a seed
// point from which the level set will be generated. The user can actually
// pass not only one seed point but a set of them. Note the the
// FastMarchingImageFilter is used here only as a helper in the
// determination of an initial level set. We could have used the
// \doxygen{DanielssonDistanceMapImageFilter} in the same way.
//
// The seeds are passed stored in a container. The type of this
// container is defined as \code{NodeContainer} among the
// FastMarchingImageFilter traits.
//
using NodeContainer = FastMarchingFilterType::NodeContainer;
using NodeType = FastMarchingFilterType::NodeType;
auto seeds = NodeContainer::New();
seedPosition[0] = std::stoi(argv[3]);
seedPosition[1] = std::stoi(argv[4]);
// Nodes are created as stack variables and initialized with a value and an
// \doxygen{Index} position. Note that here we assign the value of minus
// the user-provided distance to the unique node of the seeds passed to the
// FastMarchingImageFilter. In this way, the value will increment
// as the front is propagated, until it reaches the zero value
// corresponding to the contour. After this, the front will continue
// propagating until it fills up the entire image. The initial distance is
// taken here from the command line arguments. The rule of thumb for the
// user is to select this value as the distance from the seed points at
// which she want the initial contour to be.
const double initialDistance = std::stod(argv[5]);
NodeType node;
const double seedValue = -initialDistance;
node.SetValue(seedValue);
node.SetIndex(seedPosition);
// The list of nodes is initialized and then every node is inserted using
// the \code{InsertElement()}.
seeds->Initialize();
seeds->InsertElement(0, node);
// The set of seed nodes is passed now to the
// FastMarchingImageFilter with the method
// \code{SetTrialPoints()}.
//
fastMarching->SetTrialPoints(seeds);
// Since the FastMarchingImageFilter is used here just as a
// Distance Map generator. It does not require a speed image as input.
// Instead the constant value $1.0$ is passed using the
// \code{SetSpeedConstant()} method.
//
fastMarching->SetSpeedConstant(1.0);
// Here we configure all the writers required to see the intermediate
// outputs of the pipeline. This is added here only for
// pedagogical/debugging purposes. These intermediate output are normally
// not required. Only the output of the final thresholding filter should be
// relevant. Observing intermediate output is helpful in the process of
// fine tuning the parameters of filters in the pipeline.
//
auto caster1 = CastFilterType::New();
auto caster2 = CastFilterType::New();
auto caster3 = CastFilterType::New();
auto caster4 = CastFilterType::New();
auto writer1 = WriterType::New();
auto writer2 = WriterType::New();
auto writer3 = WriterType::New();
auto writer4 = WriterType::New();
caster1->SetInput(smoothing->GetOutput());
writer1->SetInput(caster1->GetOutput());
writer1->SetFileName("CurvesImageFilterOutput1.png");
caster1->SetOutputMinimum(0);
caster1->SetOutputMaximum(255);
writer1->Update();
caster2->SetInput(gradientMagnitude->GetOutput());
writer2->SetInput(caster2->GetOutput());
writer2->SetFileName("CurvesImageFilterOutput2.png");
caster2->SetOutputMinimum(0);
caster2->SetOutputMaximum(255);
writer2->Update();
caster3->SetInput(sigmoid->GetOutput());
writer3->SetInput(caster3->GetOutput());
writer3->SetFileName("CurvesImageFilterOutput3.png");
caster3->SetOutputMinimum(0);
caster3->SetOutputMaximum(255);
writer3->Update();
caster4->SetInput(fastMarching->GetOutput());
writer4->SetInput(caster4->GetOutput());
writer4->SetFileName("CurvesImageFilterOutput4.png");
caster4->SetOutputMinimum(0);
caster4->SetOutputMaximum(255);
// The FastMarchingImageFilter requires the user to specify the
// size of the image to be produced as output. This is done using the
// \code{SetOutputSize()}. Note that the size is obtained here from the
// output image of the smoothing filter. The size of this image is valid
// only after the \code{Update()} methods of this filter has been called
// directly or indirectly.
//
fastMarching->SetOutputSize(
reader->GetOutput()->GetBufferedRegion().GetSize());
// Software Guide : BeginLatex
//
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. As usual, the call is placed in a
// \code{try/catch} block should any errors occur or exceptions be thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Print out some useful information
std::cout << std::endl;
std::cout << "Max. no. iterations: "
<< geodesicActiveContour->GetNumberOfIterations() << std::endl;
std::cout << "Max. RMS error: "
<< geodesicActiveContour->GetMaximumRMSError() << std::endl;
std::cout << std::endl;
std::cout << "No. elpased iterations: "
<< geodesicActiveContour->GetElapsedIterations() << std::endl;
std::cout << "RMS change: " << geodesicActiveContour->GetRMSChange()
<< std::endl;
writer4->Update();
// The following writer type is used to save the output of the time-crossing
// map in a file with appropriate pixel representation. The advantage of
// saving this image in native format is that it can be used with a viewer
// to help determine an appropriate threshold to be used on the output of
// the fastmarching filter.
//
using InternalWriterType = itk::ImageFileWriter<InternalImageType>;
auto mapWriter = InternalWriterType::New();
mapWriter->SetInput(fastMarching->GetOutput());
mapWriter->SetFileName("CurvesImageFilterOutput4.mha");
mapWriter->Update();
auto speedWriter = InternalWriterType::New();
speedWriter->SetInput(sigmoid->GetOutput());
speedWriter->SetFileName("CurvesImageFilterOutput3.mha");
speedWriter->Update();
auto gradientWriter = InternalWriterType::New();
gradientWriter->SetInput(gradientMagnitude->GetOutput());
gradientWriter->SetFileName("CurvesImageFilterOutput2.mha");
gradientWriter->Update();
// Software Guide : BeginLatex
//
// Let's now run this example using as input the image
// \code{BrainProtonDensitySlice.png} provided in the directory
// \code{Examples/Data}. We can easily segment the major anatomical
// structures by providing seeds in the appropriate locations.
// Table~\ref{tab:CurvesImageFilterOutput2} presents the
// parameters used for some structures.
/*
\begin{table}
\begin{center}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline
Structure & Seed Index & Distance & $\sigma$ &
$\alpha$ & $\beta$ & Propag. & Output Image \\ \hline
Left Ventricle & $(81,114)$ & 5.0 & 1.0 & -0.5 & 3.0 & 2.0 & First \\
\hline Right Ventricle & $(99,114)$ & 5.0 & 1.0 & -0.5 & 3.0 & 2.0 &
Second \\ \hline White matter & $(56, 92)$ & 5.0 & 1.0 & -0.3 & 2.0
& 10.0 & Third \\ \hline Gray matter & $(40, 90)$ & 5.0 & 0.5 &
-0.3 & 2.0 & 10.0 & Fourth \\ \hline \end{tabular} \end{center}
\itkcaption[Curves segmentation example parameters]{Parameters used
for segmenting some brain structures shown in
Figure~\ref{fig:CurvesImageFilterOutput2} using the filter
CurvesLevelSetImageFilter.
\label{tab:CurvesImageFilterOutput2}}
\end{table}
*/
// Figure~\ref{fig:CurvesImageFilterOutput} presents the
// intermediate outputs of the pipeline illustrated in
// Figure~\ref{fig:CurvesCollaborationDiagram}. They are
// from left to right: the output of the anisotropic diffusion filter, the
// gradient magnitude of the smoothed image and the sigmoid of the gradient
// magnitude which is finally used as the edge potential for the
// CurvesLevelSetImageFilter.
//
// \begin{figure} \center
// \includegraphics[height=0.40\textheight]{BrainProtonDensitySlice}
// \includegraphics[height=0.40\textheight]{CurvesImageFilterOutput1}
// \includegraphics[height=0.40\textheight]{CurvesImageFilterOutput2}
// \includegraphics[height=0.40\textheight]{CurvesImageFilterOutput3}
// \itkcaption[CurvesLevelSetImageFilter intermediate
// output]{Images generated by the segmentation process based on the
// CurvesLevelSetImageFilter. From left to right and top to
// bottom: input image to be segmented, image smoothed with an
// edge-preserving smoothing filter, gradient magnitude of the smoothed
// image, sigmoid of the gradient magnitude. This last image, the sigmoid,
// is used to compute the speed term for the front propagation.}
// \label{fig:CurvesImageFilterOutput} \end{figure}
//
// Segmentations of the main brain structures are presented in
// Figure~\ref{fig:CurvesImageFilterOutput2}. The results
// are quite similar to those obtained with the
// ShapeDetectionLevelSetImageFilter in
// Section~\ref{sec:ShapeDetectionLevelSetFilter}.
//
// Note that a relatively larger propagation scaling value was required to
// segment the white matter. This is due to two factors: the lower
// contrast at the border of the white matter and the complex shape of the
// structure. Unfortunately the optimal value of these scaling parameters
// can only be determined by experimentation. In a real application we
// could imagine an interactive mechanism by which a user supervises the
// contour evolution and adjusts these parameters accordingly.
//
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{CurvesImageFilterOutput5}
// \includegraphics[width=0.24\textwidth]{CurvesImageFilterOutput6}
// \includegraphics[width=0.24\textwidth]{CurvesImageFilterOutput7}
// \includegraphics[width=0.24\textwidth]{CurvesImageFilterOutput8}
// \itkcaption[CurvesImageFilter segmentations]{Images generated by the
// segmentation process based on the CurvesImageFilter. From left to
// right: segmentation of the left ventricle, segmentation of the right
// ventricle, segmentation of the white matter, attempt of segmentation of
// the gray matter.}
// \label{fig:CurvesImageFilterOutput2}
// \end{figure}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
Binarize an input image by thresholding.
This filter performs anisotropic diffusion on a scalar itk::Image using the modified curvature diffus...
Segments structures in images based on user supplied edge potential map.
Standard exception handling object.
Solve an Eikonal equation using Fast Marching.
Computes the Magnitude of the Gradient of an image by convolution with the first derivative of a Gaus...
Data source that reads image data from a single file.
Writes image data to a single file.
Templated n-dimensional image class.
Definition: itkImage.h:89
Applies a linear transformation to the intensity levels of the input Image.
Computes the sigmoid function pixel-wise.
static Pointer New()