ITK  6.0.0
Insight Toolkit
Examples/Segmentation/FastMarchingImageFilter.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {FastMarchingImageFilterOutput5.png}
// ARGUMENTS: 81 114 1.0 -0.5 3.0 100 100
// OUTPUTS: {FastMarchingFilterOutput1.png}
// OUTPUTS: {FastMarchingFilterOutput2.png}
// OUTPUTS: {FastMarchingFilterOutput3.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {FastMarchingImageFilterOutput6.png}
// ARGUMENTS: 99 114 1.0 -0.5 3.0 100 100
// OUTPUTS: {FastMarchingFilterOutput1.png}
// OUTPUTS: {FastMarchingFilterOutput2.png}
// OUTPUTS: {FastMarchingFilterOutput3.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {FastMarchingImageFilterOutput7.png}
// ARGUMENTS: 56 92 1.0 -0.3 2.0 200 100
// OUTPUTS: {FastMarchingFilterOutput1.png}
// OUTPUTS: {FastMarchingFilterOutput2.png}
// OUTPUTS: {FastMarchingFilterOutput3.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {FastMarchingImageFilterOutput8.png}
// ARGUMENTS: 40 90 0.5 -0.3 2.0 200 100
// OUTPUTS: {FastMarchingFilterOutput1.png}
// OUTPUTS: {FastMarchingFilterOutput2.png}
// OUTPUTS: {FastMarchingFilterOutput3.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// When the differential equation governing the level set evolution has
// a very simple form, a fast evolution algorithm called fast marching
// can be used.
//
// The following example illustrates the use of the
// \doxygen{FastMarchingImageFilter}. This filter implements a fast marching
// solution to a simple level set evolution problem. In this example, the
// speed term used in the differential equation is expected to be provided by
// the user in the form of an image. This image is typically computed as a
// function of the gradient magnitude. Several mappings are popular in the
// literature, for example, the negative exponential $exp(-x)$ and the
// reciprocal $1/(1+x)$. In the current example we decided to use a Sigmoid
// function since it offers a good number of control parameters that can be
// customized to shape a nice speed image.
//
// The mapping should be done in such a way that the propagation speed of the
// front will be very low close to high image gradients while it will move
// rather fast in low gradient areas. This arrangement will make the contour
// propagate until it reaches the edges of anatomical structures in the image
// and then slow down in front of those edges. The output of the
// FastMarchingImageFilter is a \emph{time-crossing map} that
// indicates, for each pixel, how much time it would take for the front to
// arrive at the pixel location.
//
// \begin{figure} \center
// \includegraphics[width=\textwidth]{FastMarchingCollaborationDiagram1}
// \itkcaption[FastMarchingImageFilter collaboration diagram]{Collaboration
// diagram of the FastMarchingImageFilter applied to a segmentation task.}
// \label{fig:FastMarchingCollaborationDiagram}
// \end{figure}
//
// The application of a threshold in the output image is then equivalent to
// taking a snapshot of the contour at a particular time during its evolution.
// It is expected that the contour will take a longer time to cross over
// the edges of a particular anatomical structure. This should result in large
// changes on the time-crossing map values close to the structure edges.
// Segmentation is performed with this filter by locating a time range in
// which the contour was contained for a long time in a region of the image
// space.
//
// Figure~\ref{fig:FastMarchingCollaborationDiagram} shows the major
// components involved in the application of the FastMarchingImageFilter to a
// segmentation task. It involves an initial stage of smoothing using the
// \doxygen{CurvatureAnisotropicDiffusionImageFilter}. The smoothed image is
// passed as the input to the
// \doxygen{GradientMagnitudeRecursiveGaussianImageFilter} and then to the
// \doxygen{SigmoidImageFilter}. Finally, the output of the
// FastMarchingImageFilter is passed to a
// \doxygen{BinaryThresholdImageFilter} in order to produce a binary mask
// representing the segmented object.
//
// The code in the following example illustrates the typical setup of a
// pipeline for performing segmentation with fast marching. First, the input
// image is smoothed using an edge-preserving filter. Then the magnitude of
// its gradient is computed and passed to a sigmoid filter. The result of the
// sigmoid filter is the image potential that will be used to affect the speed
// term of the differential equation.
//
// Let's start by including the following headers. First we include the header
// of the CurvatureAnisotropicDiffusionImageFilter that will be used
// for removing noise from the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The headers of the GradientMagnitudeRecursiveGaussianImageFilter and
// SigmoidImageFilter are included below. Together, these two filters will
// produce the image potential for regulating the speed term in the
// differential equation describing the evolution of the level set.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Of course, we will need the \doxygen{Image} class and the
// FastMarchingImageFilter class. Hence we include their headers.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The time-crossing map resulting from the FastMarchingImageFilter
// will be thresholded using the BinaryThresholdImageFilter. We
// include its header here.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Reading and writing images will be done with the \doxygen{ImageFileReader}
// and \doxygen{ImageFileWriter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// The \doxygen{RescaleIntensityImageFilter} is used to renormalize the
// output of filters before sending them to files.
//
static void
PrintCommandLineUsage(const int argc, const char * const argv[])
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage outputImage seedX seedY";
std::cerr << " Sigma SigmoidAlpha SigmoidBeta TimeThreshold StoppingValue";
std::cerr
<< " smoothingOutputImage gradientMagnitudeOutputImage sigmoidOutputImage"
<< std::endl;
for (int qq = 0; qq < argc; ++qq)
{
std::cout << "argv[" << qq << "] = " << argv[qq] << std::endl;
}
}
int
main(int argc, char * argv[])
{
if (argc != 13)
{
PrintCommandLineUsage(argc, argv);
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We now define the image type using a pixel type and a particular
// dimension. In this case the \code{float} type is used for the pixels due
// to the requirements of the smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using InternalPixelType = float;
constexpr unsigned int Dimension = 2;
using InternalImageType = itk::Image<InternalPixelType, Dimension>;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output image, on the other hand, is declared to be binary.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using OutputPixelType = unsigned char;
using OutputImageType = itk::Image<OutputPixelType, Dimension>;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The type of the BinaryThresholdImageFilter filter is
// instantiated below using the internal image type and the output image
// type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ThresholdingFilterType =
auto thresholder = ThresholdingFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The upper threshold passed to the BinaryThresholdImageFilter
// will define the time snapshot that we are taking from the time-crossing
// map. In an ideal application the user should be able to select this
// threshold interactively using visual feedback. Here, since it is a
// minimal example, the value is taken from the command line arguments.
//
// Software Guide : EndLatex
const InternalPixelType timeThreshold = std::stod(argv[8]);
// Software Guide : BeginCodeSnippet
thresholder->SetLowerThreshold(0.0);
thresholder->SetUpperThreshold(timeThreshold);
thresholder->SetOutsideValue(0);
thresholder->SetInsideValue(255);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate reader and writer types in the following lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
auto reader = ReaderType::New();
auto writer = WriterType::New();
reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);
// The RescaleIntensityImageFilter type is declared below. This filter will
// renormalize image before sending them to writers.
//
using CastFilterType =
// Software Guide : BeginLatex
//
// The CurvatureAnisotropicDiffusionImageFilter type is
// instantiated using the internal image type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using SmoothingFilterType =
InternalImageType>;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, the filter is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto smoothing = SmoothingFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The types of the
// GradientMagnitudeRecursiveGaussianImageFilter and
// SigmoidImageFilter are instantiated using the internal image
// type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using GradientFilterType =
InternalImageType>;
using SigmoidFilterType =
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The corresponding filter objects are instantiated with the
// \code{New()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto gradientMagnitude = GradientFilterType::New();
auto sigmoid = SigmoidFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The minimum and maximum values of the SigmoidImageFilter output are
// defined with the methods \code{SetOutputMinimum()} and
// \code{SetOutputMaximum()}. In our case, we want these two values to be
// $0.0$ and $1.0$ respectively in order to get a nice speed image to feed
// to the FastMarchingImageFilter. Additional details on the use of
// the SigmoidImageFilter are presented in
// Section~\ref{sec:IntensityNonLinearMapping}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
sigmoid->SetOutputMinimum(0.0);
sigmoid->SetOutputMaximum(1.0);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now declare the type of the FastMarchingImageFilter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using FastMarchingFilterType =
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, we construct one filter of this class using the \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto fastMarching = FastMarchingFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filters are now connected in a pipeline shown in
// Figure~\ref{fig:FastMarchingCollaborationDiagram} using the following
// lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetInput(reader->GetOutput());
gradientMagnitude->SetInput(smoothing->GetOutput());
sigmoid->SetInput(gradientMagnitude->GetOutput());
fastMarching->SetInput(sigmoid->GetOutput());
thresholder->SetInput(fastMarching->GetOutput());
writer->SetInput(thresholder->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The CurvatureAnisotropicDiffusionImageFilter class requires a couple
// of parameters to be defined. The following are typical values for $2D$
// images. However they may have to be adjusted depending on the amount of
// noise present in the input image. This filter has been discussed in
// Section~\ref{sec:GradientAnisotropicDiffusionImageFilter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetTimeStep(0.125);
smoothing->SetNumberOfIterations(5);
smoothing->SetConductanceParameter(9.0);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The GradientMagnitudeRecursiveGaussianImageFilter performs the
// equivalent of a convolution with a Gaussian kernel followed by a
// derivative operator. The sigma of this Gaussian can be used to control
// the range of influence of the image edges. This filter has been
// discussed in
// Section~\ref{sec:GradientMagnitudeRecursiveGaussianImageFilter}.
//
// \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!SetSigma()}
//
// Software Guide : EndLatex
const double sigma = std::stod(argv[5]);
// Software Guide : BeginCodeSnippet
gradientMagnitude->SetSigma(sigma);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The SigmoidImageFilter class requires two parameters to define the
// linear transformation to be applied to the sigmoid argument. These
// parameters are passed using the \code{SetAlpha()} and \code{SetBeta()}
// methods. In the context of this example, the parameters are used to
// intensify the differences between regions of low and high values in the
// speed image. In an ideal case, the speed value should be $1.0$ in the
// homogeneous regions of anatomical structures and the value should decay
// rapidly to $0.0$ around the edges of structures. The heuristic for
// finding the values is the following: From the gradient magnitude image,
// let's call $K1$ the minimum value along the contour of the anatomical
// structure to be segmented. Then, let's call $K2$ an average value of the
// gradient magnitude in the middle of the structure. These two values
// indicate the dynamic range that we want to map to the interval $[0:1]$
// in the speed image. We want the sigmoid to map $K1$ to $0.0$ and $K2$
// to $1.0$. Given that $K1$ is expected to be higher than $K2$ and we want
// to map those values to $0.0$ and $1.0$ respectively, we want to select a
// negative value for alpha so that the sigmoid function will also do an
// inverse intensity mapping. This mapping will produce a speed image such
// that the level set will march rapidly on the homogeneous region and will
// definitely stop on the contour. The suggested value for beta is
// $(K1+K2)/2$ while the suggested value for alpha is $(K2-K1)/6$, which
// must be a negative number. In our simple example the values are
// provided by the user from the command line arguments. The user can
// estimate these values by observing the gradient magnitude image.
//
// Software Guide : EndLatex
const double alpha = std::stod(argv[6]);
const double beta = std::stod(argv[7]);
// Software Guide : BeginCodeSnippet
sigmoid->SetAlpha(alpha);
sigmoid->SetBeta(beta);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The FastMarchingImageFilter requires the user to provide a seed point
// from which the contour will expand. The user can actually pass not only
// one seed point but a set of them. A good set of seed points increases
// the chances of segmenting a complex object without missing parts. The
// use of multiple seeds also helps to reduce the amount of time needed by
// the front to visit a whole object and hence reduces the risk of leaks
// on the edges of regions visited earlier. For example, when segmenting
// an elongated object, it is undesirable to place a single seed at one
// extreme of the object since the front will need a long time to
// propagate to the other end of the object. Placing several seeds along
// the axis of the object will probably be the best strategy to ensure
// that the entire object is captured early in the expansion of the
// front. One of the important properties of level sets is their natural
// ability to fuse several fronts implicitly without any extra
// bookkeeping. The use of multiple seeds takes good advantage of this
// property.
//
// \index{itk::FastMarchingImageFilter!Multiple seeds}
//
// The seeds are passed stored in a container. The type of this
// container is defined as \code{NodeContainer} among the
// FastMarchingImageFilter traits.
//
// \index{itk::FastMarchingImageFilter!Nodes}
// \index{itk::FastMarchingImageFilter!NodeContainer}
// \index{itk::FastMarchingImageFilter!NodeType}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using NodeContainer = FastMarchingFilterType::NodeContainer;
using NodeType = FastMarchingFilterType::NodeType;
auto seeds = NodeContainer::New();
// Software Guide : EndCodeSnippet
seedPosition[0] = std::stoi(argv[3]);
seedPosition[1] = std::stoi(argv[4]);
// Software Guide : BeginLatex
//
// Nodes are created as stack variables and initialized with a value and an
// \doxygen{Index} position.
//
// \index{itk::FastMarchingImageFilter!Seed initialization}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
NodeType node;
constexpr double seedValue = 0.0;
node.SetValue(seedValue);
node.SetIndex(seedPosition);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The list of nodes is initialized and then every node is inserted using
// the \code{InsertElement()}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
seeds->Initialize();
seeds->InsertElement(0, node);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The set of seed nodes is now passed to the FastMarchingImageFilter with
// the method \code{SetTrialPoints()}.
//
// \index{itk::FastMarchingImageFilter!SetTrialPoints()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
fastMarching->SetTrialPoints(seeds);
// Software Guide : EndCodeSnippet
// Here we configure all the writers required to see the intermediate
// outputs of the pipeline. This is added here to provide
// the necessary images for generating the ITKSoftwareGuide.
// These intermediate outputs are normally not required. Only the output
// of the final thresholding filter should be relevant. Observing
// intermediate output is helpful in the process of fine tuning the
// parameters of filters in the pipeline.
//
try
{
auto caster1 = CastFilterType::New();
auto writer1 = WriterType::New();
caster1->SetInput(smoothing->GetOutput());
writer1->SetInput(caster1->GetOutput());
writer1->SetFileName(argv[10]);
caster1->SetOutputMinimum(0);
caster1->SetOutputMaximum(255);
writer1->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
try
{
auto caster2 = CastFilterType::New();
auto writer2 = WriterType::New();
caster2->SetInput(gradientMagnitude->GetOutput());
writer2->SetInput(caster2->GetOutput());
writer2->SetFileName(argv[11]);
caster2->SetOutputMinimum(0);
caster2->SetOutputMaximum(255);
writer2->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
try
{
auto caster3 = CastFilterType::New();
auto writer3 = WriterType::New();
caster3->SetInput(sigmoid->GetOutput());
writer3->SetInput(caster3->GetOutput());
writer3->SetFileName(argv[12]);
caster3->SetOutputMinimum(0);
caster3->SetOutputMaximum(255);
writer3->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The FastMarchingImageFilter requires the user to specify the
// size of the image to be produced as output. This is done using the
// \code{SetOutputSize()} method. Note that the size is obtained here from
// the output image of the smoothing filter. The size of this image is
// valid only after the \code{Update()} method of this filter has been
// called directly or indirectly.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
fastMarching->SetOutputSize(
reader->GetOutput()->GetBufferedRegion().GetSize());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the front representing the contour will propagate continuously
// over time, it is desirable to stop the process once a certain time has
// been reached. This allows us to save computation time under the
// assumption that the region of interest has already been computed. The
// value for stopping the process is defined with the method
// \code{SetStoppingValue()}. In principle, the stopping value should be a
// little bit higher than the threshold value.
//
// \index{itk::FastMarchingImageFilter!SetStoppingValue()}
//
// Software Guide : EndLatex
const double stoppingTime = std::stod(argv[9]);
// Software Guide : BeginCodeSnippet
fastMarching->SetStoppingValue(stoppingTime);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. As usual, the call is placed in a
// \code{try/catch} block should any errors occur or exceptions be thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
try
{
auto caster4 = CastFilterType::New();
auto writer4 = WriterType::New();
caster4->SetInput(fastMarching->GetOutput());
writer4->SetInput(caster4->GetOutput());
writer4->SetFileName("FastMarchingFilterOutput4.png");
caster4->SetOutputMinimum(0);
caster4->SetOutputMaximum(255);
writer4->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// The following writer type is used to save the output of the
// time-crossing map in a file with appropriate pixel representation. The
// advantage of saving this image in native format is that it can be used
// with a viewer to help determine an appropriate threshold to be used on
// the output of the \code{fastmarching} filter.
//
using InternalWriterType = itk::ImageFileWriter<InternalImageType>;
auto mapWriter = InternalWriterType::New();
mapWriter->SetInput(fastMarching->GetOutput());
mapWriter->SetFileName("FastMarchingFilterOutput4.mha");
mapWriter->Update();
auto speedWriter = InternalWriterType::New();
speedWriter->SetInput(sigmoid->GetOutput());
speedWriter->SetFileName("FastMarchingFilterOutput3.mha");
speedWriter->Update();
auto gradientWriter = InternalWriterType::New();
gradientWriter->SetInput(gradientMagnitude->GetOutput());
gradientWriter->SetFileName("FastMarchingFilterOutput2.mha");
gradientWriter->Update();
// clang-format off
// Software Guide : BeginLatex
//
// Now let's run this example using the input image
// \code{BrainProtonDensitySlice.png} provided in the directory
// \code{Examples/Data}. We can easily segment the major anatomical
// structures by providing seeds in the appropriate locations. The following
// table presents the parameters used for some structures.
//
// \begin{table}
// \begin{center}
// \begin{tabular}{|l|c|c|c|c|c|c|p{2cm}|}
// \hline
// Structure & Seed Index & $\sigma$ & $\alpha$ & $\beta$ & Threshold & Output Image from left \\ \hline
// Left Ventricle & $(81,114)$ & 1.0 & -0.5 & 3.0 & 100 & First \\ \hline
// Right Ventricle & $(99,114)$ & 1.0 & -0.5 & 3.0 & 100 & Second \\ \hline
// White matter & $(56, 92)$ & 1.0 & -0.3 & 2.0 & 200 & Third \\ \hline
// Gray matter & $(40, 90)$ & 0.5 & -0.3 & 2.0 & 200 & Fourth \\ \hline
// \end{tabular}
// \end{center}
// \itkcaption[FastMarching segmentation example parameters]{Parameters used
// for segmenting some brain structures shown in
// Figure~\ref{fig:FastMarchingImageFilterOutput2} using the filter
// FastMarchingImageFilter. All of them used a stopping value of
// 100.\label{tab:FastMarchingImageFilterOutput2}}
// \end{table}
//
// Figure~\ref{fig:FastMarchingImageFilterOutput} presents the intermediate
// outputs of the pipeline illustrated in
// Figure~\ref{fig:FastMarchingCollaborationDiagram}. They are from left to
// right: the output of the anisotropic diffusion filter, the gradient
// magnitude of the smoothed image and the sigmoid of the gradient magnitude
// which is finally used as the speed image for the
// FastMarchingImageFilter.
//
// \begin{figure} \center
// \includegraphics[height=0.40\textheight]{BrainProtonDensitySlice}
// \includegraphics[height=0.40\textheight]{FastMarchingFilterOutput1}
// \includegraphics[height=0.40\textheight]{FastMarchingFilterOutput2}
// \includegraphics[height=0.40\textheight]{FastMarchingFilterOutput3}
// \itkcaption[FastMarchingImageFilter intermediate output]{Images generated by
// the segmentation process based on the FastMarchingImageFilter. From left
// to right and top to bottom: input image to be segmented, image smoothed with an
// edge-preserving smoothing filter, gradient magnitude of the smoothed
// image, sigmoid of the gradient magnitude. This last image, the sigmoid, is
// used to compute the speed term for the front propagation. }
// \label{fig:FastMarchingImageFilterOutput}
// \end{figure}
//
// Notice that the gray matter is not being completely segmented. This
// illustrates the vulnerability of the level set methods when the
// anatomical structures to be segmented do not occupy extended regions of
// the image. This is especially true when the width of the structure is
// comparable to the size of the attenuation bands generated by the
// gradient filter. A possible workaround for this limitation is to use
// multiple seeds distributed along the elongated object. However, note
// that white matter versus gray matter segmentation is not a trivial task,
// and may require a more elaborate approach than the one used in this
// basic example.
//
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{FastMarchingImageFilterOutput5}
// \includegraphics[width=0.24\textwidth]{FastMarchingImageFilterOutput6}
// \includegraphics[width=0.24\textwidth]{FastMarchingImageFilterOutput7}
// \includegraphics[width=0.24\textwidth]{FastMarchingImageFilterOutput8}
// \itkcaption[FastMarchingImageFilter segmentations]{Images generated by the
// segmentation process based on the FastMarchingImageFilter. From left to
// right: segmentation of the left ventricle, segmentation of the right
// ventricle, segmentation of the white matter, attempt of segmentation of
// the gray matter.}
// \label{fig:FastMarchingImageFilterOutput2}
// \end{figure}
//
// Software Guide : EndLatex
// clang-format on
return EXIT_SUCCESS;
}
Binarize an input image by thresholding.
This filter performs anisotropic diffusion on a scalar itk::Image using the modified curvature diffus...
Standard exception handling object.
Solve an Eikonal equation using Fast Marching.
Computes the Magnitude of the Gradient of an image by convolution with the first derivative of a Gaus...
Data source that reads image data from a single file.
Writes image data to a single file.
Templated n-dimensional image class.
Definition: itkImage.h:89
Applies a linear transformation to the intensity levels of the input Image.
Computes the sigmoid function pixel-wise.
static Pointer New()