int
main(int argc, char * argv[])
{
if (argc < 2)
{
std::cerr << "Missing parameters." << std::endl;
std::cerr << "Usage: " << argv[0] << " inputImageFileName" << std::endl;
return EXIT_FAILURE;
}
using PixelType = unsigned char;
reader->SetFileName(argv[1]);
try
{
reader->Update();
}
{
std::cerr << "Problem encountered while reading image file : " << argv[1]
<< std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
adaptor->SetImage(reader->GetOutput());
using TreeGeneratorType =
treeGenerator->SetSample(adaptor);
treeGenerator->SetBucketSize(16);
treeGenerator->Update();
using TreeType = TreeGeneratorType::KdTreeType;
constexpr unsigned int numberOfClasses = 3;
EstimatorType::ParametersType initialMeans(numberOfClasses);
initialMeans[0] = 25.0;
initialMeans[1] = 125.0;
initialMeans[2] = 250.0;
estimator->SetParameters(initialMeans);
estimator->SetKdTree(treeGenerator->GetOutput());
estimator->SetMaximumIteration(200);
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();
EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();
for (unsigned int i = 0; i < numberOfClasses; ++i)
{
std::cout << "cluster[" << i << "] " << std::endl;
std::cout << " estimated mean : " << estimatedMeans[i] << std::endl;
}
return EXIT_SUCCESS;
}
Standard exception handling object.
Data source that reads image data from a single file.
Templated n-dimensional image class.
This class provides ListSample interface to ITK Image.
fast k-means algorithm implementation using k-d tree structure
This class generates a KdTree object with centroid information.
constexpr unsigned int Dimension