{
public:
using Self = CommandIterationUpdate;
protected:
CommandIterationUpdate() = default;
public:
using OptimizerPointer = const OptimizerType *;
void
{
}
void
{
auto optimizer = static_cast<OptimizerPointer>(object);
if (!(itk::IterationEvent().CheckEvent(&event)))
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << std::endl;
}
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile outputImagefile ";
std::cerr << " [differenceOutputfile] [differenceBeforeRegistration] ";
std::cerr << " [filenameForFinalTransformParameters] ";
std::cerr << " [useExplicitPDFderivatives ] [useCachingBSplineWeights ] ";
std::cerr << " [deformationField] ";
std::cerr << " [numberOfGridNodesInsideImageInOneDimensionCoarse] ";
std::cerr << " [numberOfGridNodesInsideImageInOneDimensionFine] ";
std::cerr << " [maximumStepLength] [maximumNumberOfIterations]";
std::cerr << std::endl;
return EXIT_FAILURE;
}
constexpr unsigned int ImageDimension = 3;
using PixelType = short;
constexpr unsigned int SpaceDimension = ImageDimension;
constexpr unsigned int SplineOrder = 3;
using CoordinateRepType = double;
using DeformableTransformType =
using TransformInitializerType =
FixedImageType,
MovingImageType>;
using MetricType =
MovingImageType>;
using InterpolatorType =
using RegistrationType =
auto metric = MetricType::New();
auto optimizer = OptimizerType::New();
auto interpolator = InterpolatorType::New();
auto registration = RegistrationType::New();
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetInterpolator(interpolator);
using IdentityTransformType =
auto identityTransform = IdentityTransformType::New();
auto fixedImageReader = FixedImageReaderType::New();
auto movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
try
{
fixedImageReader->Update();
movingImageReader->Update();
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
const FixedImageType::ConstPointer fixedImage =
fixedImageReader->GetOutput();
registration->SetFixedImage(fixedImage);
registration->SetMovingImage(movingImageReader->GetOutput());
metric->SetNumberOfHistogramBins(50);
const FixedImageType::RegionType fixedRegion =
fixedImage->GetBufferedRegion();
const unsigned int numberOfPixels = fixedRegion.GetNumberOfPixels();
metric->ReinitializeSeed(76926294);
if (argc > 7)
{
metric->SetUseExplicitPDFDerivatives(std::stoi(argv[7]));
}
if (argc > 8)
{
metric->SetUseCachingOfBSplineWeights(std::stoi(argv[8]));
}
auto initializer = TransformInitializerType::New();
auto rigidTransform = RigidTransformType::New();
initializer->SetTransform(rigidTransform);
initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());
initializer->MomentsOn();
std::cout << "Starting Rigid Transform Initialization " << std::endl;
memorymeter.
Start(
"Rigid Initialization");
chronometer.
Start(
"Rigid Initialization");
initializer->InitializeTransform();
chronometer.
Stop(
"Rigid Initialization");
memorymeter.
Stop(
"Rigid Initialization");
std::cout << "Rigid Transform Initialization completed" << std::endl;
std::cout << std::endl;
registration->SetFixedImageRegion(fixedRegion);
registration->SetInitialTransformParameters(
rigidTransform->GetParameters());
registration->SetTransform(rigidTransform);
using OptimizerScalesType = OptimizerType::ScalesType;
OptimizerScalesType optimizerScales(
rigidTransform->GetNumberOfParameters());
constexpr double translationScale = 1.0 / 1000.0;
optimizerScales[0] = 1.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = 1.0;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;
optimizerScales[5] = translationScale;
optimizer->SetScales(optimizerScales);
optimizer->SetMaximumStepLength(0.2000);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfIterations(200);
metric->SetNumberOfSpatialSamples(10000L);
auto observer = CommandIterationUpdate::New();
optimizer->AddObserver(itk::IterationEvent(), observer);
std::cout << "Starting Rigid Registration " << std::endl;
try
{
memorymeter.
Start(
"Rigid Registration");
chronometer.
Start(
"Rigid Registration");
registration->Update();
chronometer.
Stop(
"Rigid Registration");
memorymeter.
Stop(
"Rigid Registration");
std::cout << "Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
std::cout << "Rigid Registration completed" << std::endl;
std::cout << std::endl;
rigidTransform->SetParameters(registration->GetLastTransformParameters());
auto affineTransform = AffineTransformType::New();
affineTransform->SetCenter(rigidTransform->GetCenter());
affineTransform->SetTranslation(rigidTransform->GetTranslation());
affineTransform->SetMatrix(rigidTransform->GetMatrix());
registration->SetTransform(affineTransform);
registration->SetInitialTransformParameters(
affineTransform->GetParameters());
optimizerScales =
OptimizerScalesType(affineTransform->GetNumberOfParameters());
optimizerScales[0] = 1.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = 1.0;
optimizerScales[3] = 1.0;
optimizerScales[4] = 1.0;
optimizerScales[5] = 1.0;
optimizerScales[6] = 1.0;
optimizerScales[7] = 1.0;
optimizerScales[8] = 1.0;
optimizerScales[9] = translationScale;
optimizerScales[10] = translationScale;
optimizerScales[11] = translationScale;
optimizer->SetScales(optimizerScales);
optimizer->SetMaximumStepLength(0.2000);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfIterations(200);
metric->SetNumberOfSpatialSamples(50000L);
std::cout << "Starting Affine Registration " << std::endl;
try
{
memorymeter.
Start(
"Affine Registration");
chronometer.
Start(
"Affine Registration");
registration->Update();
chronometer.
Stop(
"Affine Registration");
memorymeter.
Stop(
"Affine Registration");
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
std::cout << "Affine Registration completed" << std::endl;
std::cout << std::endl;
affineTransform->SetParameters(registration->GetLastTransformParameters());
auto bsplineTransformCoarse = DeformableTransformType::New();
constexpr unsigned int numberOfGridNodesInOneDimensionCoarse = 5;
DeformableTransformType::PhysicalDimensionsType fixedPhysicalDimensions;
DeformableTransformType::MeshSizeType meshSize;
DeformableTransformType::OriginType fixedOrigin;
for (unsigned int i = 0; i < SpaceDimension; ++i)
{
fixedOrigin[i] = fixedImage->GetOrigin()[i];
fixedPhysicalDimensions[i] =
fixedImage->GetSpacing()[i] *
static_cast<double>(
fixedImage->GetLargestPossibleRegion().GetSize()[i] - 1);
}
meshSize.Fill(numberOfGridNodesInOneDimensionCoarse - SplineOrder);
bsplineTransformCoarse->SetTransformDomainOrigin(fixedOrigin);
bsplineTransformCoarse->SetTransformDomainPhysicalDimensions(
fixedPhysicalDimensions);
bsplineTransformCoarse->SetTransformDomainMeshSize(meshSize);
bsplineTransformCoarse->SetTransformDomainDirection(
fixedImage->GetDirection());
using ParametersType = DeformableTransformType::ParametersType;
unsigned int numberOfBSplineParameters =
bsplineTransformCoarse->GetNumberOfParameters();
optimizerScales = OptimizerScalesType(numberOfBSplineParameters);
optimizerScales.Fill(1.0);
optimizer->SetScales(optimizerScales);
ParametersType initialDeformableTransformParameters(
numberOfBSplineParameters);
initialDeformableTransformParameters.Fill(0.0);
using CompositeTransformType =
auto compositeTransform = CompositeTransformType::New();
compositeTransform->AddTransform(affineTransform);
compositeTransform->AddTransform(bsplineTransformCoarse);
compositeTransform->SetOnlyMostRecentTransformToOptimizeOn();
bsplineTransformCoarse->SetParameters(initialDeformableTransformParameters);
registration->SetInitialTransformParameters(
bsplineTransformCoarse->GetParameters());
registration->SetTransform(compositeTransform);
optimizer->SetMaximumStepLength(10.0);
optimizer->SetMinimumStepLength(0.01);
optimizer->SetRelaxationFactor(0.7);
optimizer->SetNumberOfIterations(50);
if (argc > 11)
{
optimizer->SetMaximumStepLength(std::stod(argv[12]));
}
if (argc > 12)
{
optimizer->SetNumberOfIterations(std::stoi(argv[13]));
}
metric->SetNumberOfSpatialSamples(numberOfBSplineParameters * 100);
std::cout << std::endl
<< "Starting Deformable Registration Coarse Grid" << std::endl;
try
{
memorymeter.
Start(
"Deformable Registration Coarse");
chronometer.
Start(
"Deformable Registration Coarse");
registration->Update();
chronometer.
Stop(
"Deformable Registration Coarse");
memorymeter.
Stop(
"Deformable Registration Coarse");
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
std::cout << "Deformable Registration Coarse Grid completed" << std::endl;
std::cout << std::endl;
OptimizerType::ParametersType finalParameters =
registration->GetLastTransformParameters();
bsplineTransformCoarse->SetParameters(finalParameters);
auto bsplineTransformFine = DeformableTransformType::New();
constexpr unsigned int numberOfGridNodesInOneDimensionFine = 20;
meshSize.Fill(numberOfGridNodesInOneDimensionFine - SplineOrder);
bsplineTransformFine->SetTransformDomainOrigin(fixedOrigin);
bsplineTransformFine->SetTransformDomainPhysicalDimensions(
fixedPhysicalDimensions);
bsplineTransformFine->SetTransformDomainMeshSize(meshSize);
bsplineTransformFine->SetTransformDomainDirection(
fixedImage->GetDirection());
numberOfBSplineParameters = bsplineTransformFine->GetNumberOfParameters();
ParametersType parametersHigh(numberOfBSplineParameters);
parametersHigh.Fill(0.0);
unsigned int counter = 0;
for (unsigned int k = 0; k < SpaceDimension; ++k)
{
using ParametersImageType = DeformableTransformType::ImageType;
using ResamplerType =
auto upsampler = ResamplerType::New();
using FunctionType =
auto function = FunctionType::New();
upsampler->SetInput(bsplineTransformCoarse->GetCoefficientImages()[k]);
upsampler->SetInterpolator(function);
upsampler->SetTransform(identityTransform);
upsampler->SetSize(bsplineTransformFine->GetCoefficientImages()[k]
->GetLargestPossibleRegion()
.GetSize());
upsampler->SetOutputSpacing(
bsplineTransformFine->GetCoefficientImages()[k]->GetSpacing());
upsampler->SetOutputOrigin(
bsplineTransformFine->GetCoefficientImages()[k]->GetOrigin());
using DecompositionType =
ParametersImageType>;
auto decomposition = DecompositionType::New();
decomposition->SetSplineOrder(SplineOrder);
decomposition->SetInput(upsampler->GetOutput());
decomposition->Update();
const ParametersImageType::Pointer newCoefficients =
decomposition->GetOutput();
Iterator it(newCoefficients,
bsplineTransformFine->GetCoefficientImages()[k]
->GetLargestPossibleRegion());
while (!it.IsAtEnd())
{
parametersHigh[counter++] = it.Get();
++it;
}
}
optimizerScales = OptimizerScalesType(numberOfBSplineParameters);
optimizerScales.Fill(1.0);
optimizer->SetScales(optimizerScales);
bsplineTransformFine->SetParameters(parametersHigh);
std::cout << "Starting Registration with high resolution transform"
<< std::endl;
compositeTransform->RemoveTransform();
compositeTransform->AddTransform(bsplineTransformFine);
compositeTransform->SetOnlyMostRecentTransformToOptimizeOn();
registration->SetInitialTransformParameters(
bsplineTransformFine->GetParameters());
const auto numberOfSamples = static_cast<unsigned long>(
std::sqrt(static_cast<double>(numberOfBSplineParameters) *
static_cast<double>(numberOfPixels)));
metric->SetNumberOfSpatialSamples(numberOfSamples);
try
{
memorymeter.
Start(
"Deformable Registration Fine");
chronometer.
Start(
"Deformable Registration Fine");
registration->Update();
chronometer.
Stop(
"Deformable Registration Fine");
memorymeter.
Stop(
"Deformable Registration Fine");
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
std::cout << "Deformable Registration Fine Grid completed" << std::endl;
std::cout << std::endl;
chronometer.
Report(std::cout);
memorymeter.
Report(std::cout);
finalParameters = registration->GetLastTransformParameters();
bsplineTransformFine->SetParameters(finalParameters);
using ResampleFilterType =
auto resample = ResampleFilterType::New();
resample->SetTransform(bsplineTransformFine);
resample->SetInput(movingImageReader->GetOutput());
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(0);
using OutputPixelType = short;
using CastFilterType =
auto writer = WriterType::New();
auto caster = CastFilterType::New();
writer->SetFileName(argv[3]);
caster->SetInput(resample->GetOutput());
writer->SetInput(caster->GetOutput());
std::cout << "Writing resampled moving image...";
try
{
writer->Update();
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
std::cout << " Done!" << std::endl;
using DifferenceFilterType =
FixedImageType,
OutputImageType>;
auto difference = DifferenceFilterType::New();
using SqrtFilterType =
auto sqrtFilter = SqrtFilterType::New();
sqrtFilter->SetInput(difference->GetOutput());
auto writer2 = DifferenceImageWriterType::New();
writer2->SetInput(sqrtFilter->GetOutput());
if (argc > 4)
{
difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(resample->GetOutput());
writer2->SetFileName(argv[4]);
std::cout << "Writing difference image after registration...";
try
{
writer2->Update();
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
std::cout << " Done!" << std::endl;
}
if (argc > 5)
{
writer2->SetFileName(argv[5]);
difference->SetInput1(fixedImageReader->GetOutput());
resample->SetTransform(identityTransform);
std::cout << "Writing difference image before registration...";
try
{
writer2->Update();
}
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
std::cout << " Done!" << std::endl;
}
if (argc > 9)
{
auto field = DisplacementFieldType::New();
field->SetRegions(fixedRegion);
field->SetOrigin(fixedImage->GetOrigin());
field->SetSpacing(fixedImage->GetSpacing());
field->SetDirection(fixedImage->GetDirection());
field->Allocate();
FieldIterator fi(field, fixedRegion);
fi.GoToBegin();
DeformableTransformType::InputPointType fixedPoint;
DeformableTransformType::OutputPointType movingPoint;
DisplacementFieldType::IndexType index;
while (!fi.IsAtEnd())
{
index = fi.GetIndex();
field->TransformIndexToPhysicalPoint(index, fixedPoint);
movingPoint = bsplineTransformFine->TransformPoint(fixedPoint);
displacement = movingPoint - fixedPoint;
fi.Set(displacement);
++fi;
}
auto fieldWriter = FieldWriterType::New();
fieldWriter->SetInput(field);
fieldWriter->SetFileName(argv[9]);
std::cout << "Writing deformation field ...";
try
{
fieldWriter->Update();
}
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
std::cout << " Done!" << std::endl;
}
if (argc > 6)
{
std::cout << "Writing transform parameter file ...";
auto transformWriter = TransformWriterType::New();
transformWriter->AddTransform(bsplineTransformFine);
transformWriter->SetFileName(argv[6]);
transformWriter->Update();
std::cout << " Done!" << std::endl;
}
return EXIT_SUCCESS;
}
Calculates the B-Spline coefficients of an image. Spline order may be from 0 to 5.
Resample image intensity from a BSpline coefficient image.
Casts input pixels to output pixel type.
Superclass for callback/observer methods.
virtual void Execute(Object *caller, const EventObject &event)=0
Abstraction of the Events used to communicating among filters and with GUIs.
Standard exception handling object.
Data source that reads image data from a single file.
Writes image data to a single file.
A multi-dimensional iterator templated over image type that walks a region of pixels.
Base class for Image Registration Methods.
Templated n-dimensional image class.
Linearly interpolate an image at specified positions.
Aggregates a set of memory probes.
Base class for most ITK classes.
Implement a gradient descent optimizer.
Resample an image via a coordinate transform.
virtual void Start(const char *id)
virtual void Report(std::ostream &os=std::cout, bool printSystemInfo=true, bool printReportHead=true, bool useTabs=false)
virtual void Stop(const char *id)
Implements transparent reference counting.
Computes the square root of each pixel.
Implements pixel-wise the computation of squared difference.
Aggregates a set of time probes.
A templated class holding a n-Dimensional vector.
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
ImageBaseType::SpacingType VectorType
itk::TransformFileWriterTemplate< double > TransformFileWriter