ITK
6.0.0
Insight Toolkit
Examples/RegistrationITKv4/DeformableRegistration15.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates a realistic pipeline for solving a full deformable
// registration problem.
//
// First the two images are roughly aligned by using a transform
// initialization, then they are registered using a rigid transform, that in
// turn, is used to initialize a registration with an affine transform. The
// transform resulting from the affine registration is compounded with
// a BSplineTransform. The deformable registration is computed,
// and finally the resulting transform is used to resample the moving image.
//
// Software Guide : EndLatex
#include "
itkImageRegistrationMethod.h
"
#include "
itkMattesMutualInformationImageToImageMetric.h
"
#include "
itkTimeProbesCollectorBase.h
"
#include "
itkMemoryProbesCollectorBase.h
"
// Software Guide : BeginLatex
//
// The following are the most relevant headers to this example.
//
// \index{itk::VersorRigid3DTransform!header}
// \index{itk::AffineTransform!header}
// \index{itk::BSplineTransform!header}
// \index{itk::RegularStepGradientDescentOptimizer!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkCenteredTransformInitializer.h
"
#include "
itkVersorRigid3DTransform.h
"
#include "
itkAffineTransform.h
"
#include "
itkBSplineTransform.h
"
#include "
itkCompositeTransform.h
"
#include "
itkRegularStepGradientDescentOptimizer.h
"
// Software Guide : EndCodeSnippet
#include "
itkBSplineResampleImageFunction.h
"
#include "
itkBSplineDecompositionImageFilter.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
#include "
itkSquaredDifferenceImageFilter.h
"
#include "
itkSqrtImageFilter.h
"
#include "
itkTransformFileWriter.h
"
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
using
Self
= CommandIterationUpdate;
using
Superclass
=
itk::Command
;
using
Pointer
=
itk::SmartPointer<Self>
;
itkNewMacro(
Self
);
protected
:
CommandIterationUpdate() =
default
;
public
:
using
OptimizerType =
itk::RegularStepGradientDescentOptimizer
;
using
OptimizerPointer =
const
OptimizerType *;
void
Execute
(
itk::Object
* caller,
const
itk::EventObject
& event)
override
{
Execute
((
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
override
{
auto
optimizer =
static_cast<
OptimizerPointer
>
(object);
if
(!(itk::IterationEvent().CheckEvent(&event)))
{
return
;
}
std::cout << optimizer->GetCurrentIteration() <<
" "
;
std::cout << optimizer->GetValue() <<
" "
;
std::cout << std::endl;
}
};
int
main(
int
argc,
char
* argv[])
{
if
(argc < 4)
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile outputImagefile "
;
std::cerr <<
" [differenceOutputfile] [differenceBeforeRegistration] "
;
std::cerr <<
" [filenameForFinalTransformParameters] "
;
std::cerr <<
" [useExplicitPDFderivatives ] [useCachingBSplineWeights ] "
;
std::cerr <<
" [deformationField] "
;
std::cerr <<
" [numberOfGridNodesInsideImageInOneDimensionCoarse] "
;
std::cerr <<
" [numberOfGridNodesInsideImageInOneDimensionFine] "
;
std::cerr <<
" [maximumStepLength] [maximumNumberOfIterations]"
;
std::cerr << std::endl;
return
EXIT_FAILURE;
}
constexpr
unsigned
int
ImageDimension = 3;
using
PixelType = short;
using
FixedImageType =
itk::Image<PixelType, ImageDimension>
;
using
MovingImageType =
itk::Image<PixelType, ImageDimension>
;
constexpr
unsigned
int
SpaceDimension = ImageDimension;
constexpr
unsigned
int
SplineOrder = 3;
using
CoordinateRepType = double;
using
RigidTransformType =
itk::VersorRigid3DTransform<double>
;
using
AffineTransformType =
itk::AffineTransform<double, SpaceDimension>
;
using
DeformableTransformType =
itk::BSplineTransform<CoordinateRepType, SpaceDimension, SplineOrder>
;
using
TransformInitializerType =
itk::CenteredTransformInitializer
<RigidTransformType,
FixedImageType,
MovingImageType>;
using
OptimizerType =
itk::RegularStepGradientDescentOptimizer
;
using
MetricType =
itk::MattesMutualInformationImageToImageMetric
<FixedImageType,
MovingImageType>;
using
InterpolatorType =
itk::LinearInterpolateImageFunction<MovingImageType, double>
;
using
RegistrationType =
itk::ImageRegistrationMethod<FixedImageType, MovingImageType>
;
auto
metric =
MetricType::New
();
auto
optimizer =
OptimizerType::New
();
auto
interpolator =
InterpolatorType::New
();
auto
registration =
RegistrationType::New
();
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetInterpolator(interpolator);
// Auxiliary identity transform.
using
IdentityTransformType =
itk::IdentityTransform<double, SpaceDimension>
;
auto
identityTransform =
IdentityTransformType::New
();
// Read the Fixed and Moving images.
using
FixedImageReaderType =
itk::ImageFileReader<FixedImageType>
;
using
MovingImageReaderType =
itk::ImageFileReader<MovingImageType>
;
auto
fixedImageReader =
FixedImageReaderType::New
();
auto
movingImageReader =
MovingImageReaderType::New
();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
try
{
fixedImageReader->Update();
movingImageReader->Update();
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
const
FixedImageType::ConstPointer
fixedImage =
fixedImageReader->GetOutput();
registration->SetFixedImage(fixedImage);
registration->SetMovingImage(movingImageReader->GetOutput());
// Add a time and memory probes collector for profiling the computation time
// of every stage.
itk::TimeProbesCollectorBase
chronometer;
itk::MemoryProbesCollectorBase
memorymeter;
// Setup the metric parameters
metric->SetNumberOfHistogramBins(50);
const
FixedImageType::RegionType
fixedRegion =
fixedImage->GetBufferedRegion();
const
unsigned
int
numberOfPixels = fixedRegion.
GetNumberOfPixels
();
metric->ReinitializeSeed(76926294);
if
(argc > 7)
{
// Define whether to calculate the metric derivative by explicitly
// computing the derivatives of the joint PDF with respect to the
// Transform parameters, or doing it by progressively accumulating
// contributions from each bin in the joint PDF.
metric->SetUseExplicitPDFDerivatives(std::stoi(argv[7]));
}
if
(argc > 8)
{
// Define whether to cache the BSpline weights and indexes corresponding
// to each one of the samples used to compute the metric. Enabling caching
// will make the algorithm run faster but it will have a cost on the
// amount of memory that needs to be allocated. This option is only
// relevant when using the BSplineTransform.
metric->SetUseCachingOfBSplineWeights(std::stoi(argv[8]));
}
// Initialize a rigid transform by using Image Intensity Moments
auto
initializer =
TransformInitializerType::New
();
auto
rigidTransform =
RigidTransformType::New
();
initializer->SetTransform(rigidTransform);
initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());
initializer->MomentsOn();
std::cout <<
"Starting Rigid Transform Initialization "
<< std::endl;
memorymeter.
Start
(
"Rigid Initialization"
);
chronometer.
Start
(
"Rigid Initialization"
);
initializer->InitializeTransform();
chronometer.
Stop
(
"Rigid Initialization"
);
memorymeter.
Stop
(
"Rigid Initialization"
);
std::cout <<
"Rigid Transform Initialization completed"
<< std::endl;
std::cout << std::endl;
registration->SetFixedImageRegion(fixedRegion);
registration->SetInitialTransformParameters(
rigidTransform->GetParameters());
registration->SetTransform(rigidTransform);
// Define optimizer normalization to compensate for different dynamic range
// of rotations and translations.
using
OptimizerScalesType = OptimizerType::ScalesType;
OptimizerScalesType optimizerScales(
rigidTransform->GetNumberOfParameters());
constexpr
double
translationScale = 1.0 / 1000.0;
optimizerScales[0] = 1.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = 1.0;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;
optimizerScales[5] = translationScale;
optimizer->SetScales(optimizerScales);
optimizer->SetMaximumStepLength(0.2000);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfIterations(200);
//
// The rigid transform has 6 parameters we use therefore a few samples to
// run this stage.
//
// Regulating the number of samples in the Metric is equivalent to
// performing multi-resolution registration because it is indeed a
// sub-sampling of the image.
metric->SetNumberOfSpatialSamples(10000L);
// Create the Command observer and register it with the optimizer.
auto
observer =
CommandIterationUpdate::New
();
optimizer->AddObserver(itk::IterationEvent(), observer);
std::cout <<
"Starting Rigid Registration "
<< std::endl;
try
{
memorymeter.
Start
(
"Rigid Registration"
);
chronometer.
Start
(
"Rigid Registration"
);
registration->Update();
chronometer.
Stop
(
"Rigid Registration"
);
memorymeter.
Stop
(
"Rigid Registration"
);
std::cout <<
"Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
std::cout <<
"Rigid Registration completed"
<< std::endl;
std::cout << std::endl;
rigidTransform->SetParameters(registration->GetLastTransformParameters());
// Perform Affine Registration
auto
affineTransform =
AffineTransformType::New
();
affineTransform->SetCenter(rigidTransform->GetCenter());
affineTransform->SetTranslation(rigidTransform->GetTranslation());
affineTransform->SetMatrix(rigidTransform->GetMatrix());
registration->SetTransform(affineTransform);
registration->SetInitialTransformParameters(
affineTransform->GetParameters());
optimizerScales =
OptimizerScalesType(affineTransform->GetNumberOfParameters());
optimizerScales[0] = 1.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = 1.0;
optimizerScales[3] = 1.0;
optimizerScales[4] = 1.0;
optimizerScales[5] = 1.0;
optimizerScales[6] = 1.0;
optimizerScales[7] = 1.0;
optimizerScales[8] = 1.0;
optimizerScales[9] = translationScale;
optimizerScales[10] = translationScale;
optimizerScales[11] = translationScale;
optimizer->SetScales(optimizerScales);
optimizer->SetMaximumStepLength(0.2000);
optimizer->SetMinimumStepLength(0.0001);
optimizer->SetNumberOfIterations(200);
// The Affine transform has 12 parameters we use therefore a more samples to
// run this stage.
//
// Regulating the number of samples in the Metric is equivalent to
// performing multi-resolution registration because it is indeed a
// sub-sampling of the image.
metric->SetNumberOfSpatialSamples(50000L);
std::cout <<
"Starting Affine Registration "
<< std::endl;
try
{
memorymeter.
Start
(
"Affine Registration"
);
chronometer.
Start
(
"Affine Registration"
);
registration->Update();
chronometer.
Stop
(
"Affine Registration"
);
memorymeter.
Stop
(
"Affine Registration"
);
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
std::cout <<
"Affine Registration completed"
<< std::endl;
std::cout << std::endl;
affineTransform->SetParameters(registration->GetLastTransformParameters());
// Perform Deformable Registration
auto
bsplineTransformCoarse =
DeformableTransformType::New
();
constexpr
unsigned
int
numberOfGridNodesInOneDimensionCoarse = 5;
DeformableTransformType::PhysicalDimensionsType fixedPhysicalDimensions;
DeformableTransformType::MeshSizeType meshSize;
DeformableTransformType::OriginType fixedOrigin;
for
(
unsigned
int
i = 0; i < SpaceDimension; ++i)
{
fixedOrigin[i] = fixedImage->GetOrigin()[i];
fixedPhysicalDimensions[i] =
fixedImage->GetSpacing()[i] *
static_cast<
double
>
(
fixedImage->GetLargestPossibleRegion().GetSize()[i] - 1);
}
meshSize.Fill(numberOfGridNodesInOneDimensionCoarse - SplineOrder);
bsplineTransformCoarse->SetTransformDomainOrigin(fixedOrigin);
bsplineTransformCoarse->SetTransformDomainPhysicalDimensions(
fixedPhysicalDimensions);
bsplineTransformCoarse->SetTransformDomainMeshSize(meshSize);
bsplineTransformCoarse->SetTransformDomainDirection(
fixedImage->GetDirection());
using
ParametersType = DeformableTransformType::ParametersType;
unsigned
int
numberOfBSplineParameters =
bsplineTransformCoarse->GetNumberOfParameters();
optimizerScales = OptimizerScalesType(numberOfBSplineParameters);
optimizerScales.Fill(1.0);
optimizer->SetScales(optimizerScales);
ParametersType initialDeformableTransformParameters(
numberOfBSplineParameters);
initialDeformableTransformParameters.Fill(0.0);
using
CompositeTransformType =
itk::CompositeTransform<double, SpaceDimension>
;
auto
compositeTransform =
CompositeTransformType::New
();
compositeTransform->AddTransform(affineTransform);
compositeTransform->AddTransform(bsplineTransformCoarse);
compositeTransform->SetOnlyMostRecentTransformToOptimizeOn();
bsplineTransformCoarse->SetParameters(initialDeformableTransformParameters);
registration->SetInitialTransformParameters(
bsplineTransformCoarse->GetParameters());
registration->SetTransform(compositeTransform);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we set the parameters of the RegularStepGradientDescentOptimizer
// object.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetMaximumStepLength(10.0);
optimizer->SetMinimumStepLength(0.01);
optimizer->SetRelaxationFactor(0.7);
optimizer->SetNumberOfIterations(50);
// Software Guide : EndCodeSnippet
// Optionally, get the step length from the command line arguments
if
(argc > 11)
{
optimizer->SetMaximumStepLength(std::stod(argv[12]));
}
// Optionally, get the number of iterations from the command line arguments
if
(argc > 12)
{
optimizer->SetNumberOfIterations(std::stoi(argv[13]));
}
// The BSpline transform has a large number of parameters, we use therefore
// a much larger number of samples to run this stage.
//
// Regulating the number of samples in the Metric is equivalent to
// performing multi-resolution registration because it is indeed a
// sub-sampling of the image.
metric->SetNumberOfSpatialSamples(numberOfBSplineParameters * 100);
std::cout << std::endl
<<
"Starting Deformable Registration Coarse Grid"
<< std::endl;
try
{
memorymeter.
Start
(
"Deformable Registration Coarse"
);
chronometer.
Start
(
"Deformable Registration Coarse"
);
registration->Update();
chronometer.
Stop
(
"Deformable Registration Coarse"
);
memorymeter.
Stop
(
"Deformable Registration Coarse"
);
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
std::cout <<
"Deformable Registration Coarse Grid completed"
<< std::endl;
std::cout << std::endl;
OptimizerType::ParametersType finalParameters =
registration->GetLastTransformParameters();
bsplineTransformCoarse->SetParameters(finalParameters);
// Software Guide : BeginLatex
//
// Once the registration has finished with the low resolution grid, we
// proceed to instantiate a higher resolution
// \code{BSplineTransform}.
//
// Software Guide : EndLatex
auto
bsplineTransformFine =
DeformableTransformType::New
();
constexpr
unsigned
int
numberOfGridNodesInOneDimensionFine = 20;
meshSize.Fill(numberOfGridNodesInOneDimensionFine - SplineOrder);
bsplineTransformFine->SetTransformDomainOrigin(fixedOrigin);
bsplineTransformFine->SetTransformDomainPhysicalDimensions(
fixedPhysicalDimensions);
bsplineTransformFine->SetTransformDomainMeshSize(meshSize);
bsplineTransformFine->SetTransformDomainDirection(
fixedImage->GetDirection());
numberOfBSplineParameters = bsplineTransformFine->GetNumberOfParameters();
ParametersType parametersHigh(numberOfBSplineParameters);
parametersHigh.Fill(0.0);
// Software Guide : BeginLatex
//
// Now we need to initialize the BSpline coefficients of the higher
// resolution transform. This is done by first computing the actual
// deformation field at the higher resolution from the lower resolution
// BSpline coefficients. Then a BSpline decomposition is done to obtain the
// BSpline coefficient of the higher resolution transform.
//
// Software Guide : EndLatex
unsigned
int
counter = 0;
for
(
unsigned
int
k = 0; k < SpaceDimension; ++k)
{
using
ParametersImageType = DeformableTransformType::ImageType;
using
ResamplerType =
itk::ResampleImageFilter<ParametersImageType, ParametersImageType>
;
auto
upsampler =
ResamplerType::New
();
using
FunctionType =
itk::BSplineResampleImageFunction<ParametersImageType, double>
;
auto
function =
FunctionType::New
();
upsampler->SetInput(bsplineTransformCoarse->GetCoefficientImages()[k]);
upsampler->SetInterpolator(function);
upsampler->SetTransform(identityTransform);
upsampler->SetSize(bsplineTransformFine->GetCoefficientImages()[k]
->GetLargestPossibleRegion()
.GetSize());
upsampler->SetOutputSpacing(
bsplineTransformFine->GetCoefficientImages()[k]->GetSpacing());
upsampler->SetOutputOrigin(
bsplineTransformFine->GetCoefficientImages()[k]->GetOrigin());
using
DecompositionType =
itk::BSplineDecompositionImageFilter
<ParametersImageType,
ParametersImageType>;
auto
decomposition =
DecompositionType::New
();
decomposition->SetSplineOrder(SplineOrder);
decomposition->SetInput(upsampler->GetOutput());
decomposition->Update();
const
ParametersImageType::Pointer
newCoefficients =
decomposition->GetOutput();
// copy the coefficients into the parameter array
using
Iterator =
itk::ImageRegionIterator<ParametersImageType>
;
Iterator it(newCoefficients,
bsplineTransformFine->GetCoefficientImages()[k]
->GetLargestPossibleRegion());
while
(!it.IsAtEnd())
{
parametersHigh[counter++] = it.Get();
++it;
}
}
optimizerScales = OptimizerScalesType(numberOfBSplineParameters);
optimizerScales.Fill(1.0);
optimizer->SetScales(optimizerScales);
bsplineTransformFine->SetParameters(parametersHigh);
// Software Guide : BeginLatex
//
// We now pass the parameters of the high resolution transform as the
// initial parameters to be used in a second stage of the registration
// process.
//
// Software Guide : EndLatex
std::cout <<
"Starting Registration with high resolution transform"
<< std::endl;
// Software Guide : BeginCodeSnippet
compositeTransform->RemoveTransform();
// remove bsplineTransformCoarse
compositeTransform->AddTransform(bsplineTransformFine);
compositeTransform->SetOnlyMostRecentTransformToOptimizeOn();
registration->SetInitialTransformParameters(
bsplineTransformFine->GetParameters());
//
// The BSpline transform at fine scale has a very large number of
// parameters, we use therefore a much larger number of samples to run this
// stage. In this case, however, the number of transform parameters is
// closer to the number of pixels in the image. Therefore we use the
// geometric mean of the two numbers to ensure that the number of samples is
// larger than the number of transform parameters and smaller than the
// number of samples.
//
// Regulating the number of samples in the Metric is equivalent to
// performing multi-resolution registration because it is indeed a
// sub-sampling of the image.
const
auto
numberOfSamples =
static_cast<
unsigned
long
>
(
std::sqrt(
static_cast<
double
>
(numberOfBSplineParameters) *
static_cast<
double
>
(numberOfPixels)));
metric->SetNumberOfSpatialSamples(numberOfSamples);
try
{
memorymeter.
Start
(
"Deformable Registration Fine"
);
chronometer.
Start
(
"Deformable Registration Fine"
);
registration->Update();
chronometer.
Stop
(
"Deformable Registration Fine"
);
memorymeter.
Stop
(
"Deformable Registration Fine"
);
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
std::cout <<
"Deformable Registration Fine Grid completed"
<< std::endl;
std::cout << std::endl;
// Report the time and memory taken by the registration
chronometer.
Report
(std::cout);
memorymeter.
Report
(std::cout);
finalParameters = registration->GetLastTransformParameters();
bsplineTransformFine->SetParameters(finalParameters);
using
ResampleFilterType =
itk::ResampleImageFilter<MovingImageType, FixedImageType>
;
auto
resample =
ResampleFilterType::New
();
resample->SetTransform(bsplineTransformFine);
resample->SetInput(movingImageReader->GetOutput());
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
// This value is set to zero in order to make easier to perform
// regression testing in this example. However, for didactic
// exercise it will be better to set it to a medium gray value
// such as 100 or 128.
resample->SetDefaultPixelValue(0);
using
OutputPixelType = short;
using
OutputImageType =
itk::Image<OutputPixelType, ImageDimension>
;
using
CastFilterType =
itk::CastImageFilter<FixedImageType, OutputImageType>
;
using
WriterType =
itk::ImageFileWriter<OutputImageType>
;
auto
writer =
WriterType::New
();
auto
caster =
CastFilterType::New
();
writer->SetFileName(argv[3]);
caster->SetInput(resample->GetOutput());
writer->SetInput(caster->GetOutput());
std::cout <<
"Writing resampled moving image..."
;
try
{
writer->Update();
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
std::cout <<
" Done!"
<< std::endl;
using
DifferenceFilterType =
itk::SquaredDifferenceImageFilter
<FixedImageType,
FixedImageType,
OutputImageType>;
auto
difference =
DifferenceFilterType::New
();
using
SqrtFilterType =
itk::SqrtImageFilter<OutputImageType, OutputImageType>
;
auto
sqrtFilter =
SqrtFilterType::New
();
sqrtFilter->SetInput(difference->GetOutput());
using
DifferenceImageWriterType =
itk::ImageFileWriter<OutputImageType>
;
auto
writer2 =
DifferenceImageWriterType::New
();
writer2->SetInput(sqrtFilter->GetOutput());
// Compute the difference image between the
// fixed and resampled moving image.
if
(argc > 4)
{
difference->SetInput1(fixedImageReader->GetOutput());
difference->SetInput2(resample->GetOutput());
writer2->SetFileName(argv[4]);
std::cout <<
"Writing difference image after registration..."
;
try
{
writer2->Update();
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
std::cout <<
" Done!"
<< std::endl;
}
// Compute the difference image between the
// fixed and moving image before registration.
if
(argc > 5)
{
writer2->SetFileName(argv[5]);
difference->SetInput1(fixedImageReader->GetOutput());
resample->SetTransform(identityTransform);
std::cout <<
"Writing difference image before registration..."
;
try
{
writer2->Update();
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
std::cout <<
" Done!"
<< std::endl;
}
// Generate the explicit deformation field resulting from
// the registration.
if
(argc > 9)
{
using
VectorType
=
itk::Vector<float, ImageDimension>
;
using
DisplacementFieldType =
itk::Image<VectorType, ImageDimension>
;
auto
field =
DisplacementFieldType::New
();
field->SetRegions(fixedRegion);
field->SetOrigin(fixedImage->GetOrigin());
field->SetSpacing(fixedImage->GetSpacing());
field->SetDirection(fixedImage->GetDirection());
field->Allocate();
using
FieldIterator =
itk::ImageRegionIterator<DisplacementFieldType>
;
FieldIterator fi(field, fixedRegion);
fi.GoToBegin();
DeformableTransformType::InputPointType fixedPoint;
DeformableTransformType::OutputPointType movingPoint;
DisplacementFieldType::IndexType
index;
VectorType
displacement;
while
(!fi.IsAtEnd())
{
index = fi.GetIndex();
field->TransformIndexToPhysicalPoint(index, fixedPoint);
movingPoint = bsplineTransformFine->TransformPoint(fixedPoint);
displacement = movingPoint - fixedPoint;
fi.Set(displacement);
++fi;
}
using
FieldWriterType =
itk::ImageFileWriter<DisplacementFieldType>
;
auto
fieldWriter =
FieldWriterType::New
();
fieldWriter->SetInput(field);
fieldWriter->SetFileName(argv[9]);
std::cout <<
"Writing deformation field ..."
;
try
{
fieldWriter->Update();
}
catch
(
const
itk::ExceptionObject
& excp)
{
std::cerr <<
"Exception thrown "
<< std::endl;
std::cerr << excp << std::endl;
return
EXIT_FAILURE;
}
std::cout <<
" Done!"
<< std::endl;
}
// Optionally, save the transform parameters in a file
if
(argc > 6)
{
std::cout <<
"Writing transform parameter file ..."
;
using
TransformWriterType =
itk::TransformFileWriter
;
auto
transformWriter =
TransformWriterType::New
();
transformWriter->AddTransform(bsplineTransformFine);
transformWriter->SetFileName(argv[6]);
transformWriter->Update();
std::cout <<
" Done!"
<< std::endl;
}
return
EXIT_SUCCESS;
}
AddImageFilter
Pixel-wise addition of two images.
itk::AffineTransform
Definition:
itkAffineTransform.h:103
itk::BSplineDecompositionImageFilter
Calculates the B-Spline coefficients of an image. Spline order may be from 0 to 5.
Definition:
itkBSplineDecompositionImageFilter.h:75
itk::BSplineResampleImageFunction
Resample image intensity from a BSpline coefficient image.
Definition:
itkBSplineResampleImageFunction.h:59
itk::BSplineTransform
Deformable transform using a BSpline representation.
Definition:
itkBSplineTransform.h:104
itk::CastImageFilter
Casts input pixels to output pixel type.
Definition:
itkCastImageFilter.h:101
itk::CenteredTransformInitializer
CenteredTransformInitializer is a helper class intended to initialize the center of rotation and the ...
Definition:
itkCenteredTransformInitializer.h:62
itk::Command
Superclass for callback/observer methods.
Definition:
itkCommand.h:46
itk::Command::Execute
virtual void Execute(Object *caller, const EventObject &event)=0
itk::CompositeTransform
This class contains a list of transforms and concatenates them by composition.
Definition:
itkCompositeTransform.h:88
itk::EventObject
Abstraction of the Events used to communicating among filters and with GUIs.
Definition:
itkEventObject.h:59
itk::ExceptionObject
Standard exception handling object.
Definition:
itkExceptionObject.h:51
itk::IdentityTransform
Implementation of an Identity Transform.
Definition:
itkIdentityTransform.h:51
itk::ImageFileReader
Data source that reads image data from a single file.
Definition:
itkImageFileReader.h:76
itk::ImageFileWriter
Writes image data to a single file.
Definition:
itkImageFileWriter.h:91
itk::ImageRegionIterator
A multi-dimensional iterator templated over image type that walks a region of pixels.
Definition:
itkImageRegionIterator.h:81
itk::ImageRegion::GetNumberOfPixels
SizeValueType GetNumberOfPixels() const
itk::ImageRegistrationMethod
Base class for Image Registration Methods.
Definition:
itkImageRegistrationMethod.h:71
itk::Image
Templated n-dimensional image class.
Definition:
itkImage.h:89
itk::LinearInterpolateImageFunction
Linearly interpolate an image at specified positions.
Definition:
itkLinearInterpolateImageFunction.h:52
itk::MattesMutualInformationImageToImageMetric
Computes the mutual information between two images to be registered using the method of Mattes et al.
Definition:
itkMattesMutualInformationImageToImageMetric.h:119
itk::MemoryProbesCollectorBase
Aggregates a set of memory probes.
Definition:
itkMemoryProbesCollectorBase.h:38
itk::Object
Base class for most ITK classes.
Definition:
itkObject.h:62
itk::RegularStepGradientDescentOptimizer
Implement a gradient descent optimizer.
Definition:
itkRegularStepGradientDescentOptimizer.h:34
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition:
itkResampleImageFilter.h:91
itk::ResourceProbesCollectorBase::Start
virtual void Start(const char *id)
itk::ResourceProbesCollectorBase::Report
virtual void Report(std::ostream &os=std::cout, bool printSystemInfo=true, bool printReportHead=true, bool useTabs=false)
itk::ResourceProbesCollectorBase::Stop
virtual void Stop(const char *id)
itk::SmartPointer< Self >
itk::SqrtImageFilter
Computes the square root of each pixel.
Definition:
itkSqrtImageFilter.h:65
itk::SquaredDifferenceImageFilter
Implements pixel-wise the computation of squared difference.
Definition:
itkSquaredDifferenceImageFilter.h:84
itk::TimeProbesCollectorBase
Aggregates a set of time probes.
Definition:
itkTimeProbesCollectorBase.h:39
itk::Vector
A templated class holding a n-Dimensional vector.
Definition:
itkVector.h:63
itk::VersorRigid3DTransform< double >
ConstPointer
SmartPointer< const Self > ConstPointer
Definition:
itkAddImageFilter.h:94
New
static Pointer New()
Superclass
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
Definition:
itkAddImageFilter.h:90
Pointer
SmartPointer< Self > Pointer
Definition:
itkAddImageFilter.h:93
itkAffineTransform.h
itkBSplineDecompositionImageFilter.h
itkBSplineResampleImageFunction.h
itkBSplineTransform.h
itkCastImageFilter.h
itkCenteredTransformInitializer.h
itkCommand.h
itkCompositeTransform.h
itkImageFileReader.h
itkImageFileWriter.h
itkImageRegistrationMethod.h
itkMattesMutualInformationImageToImageMetric.h
itkMemoryProbesCollectorBase.h
itkRegularStepGradientDescentOptimizer.h
itkResampleImageFilter.h
itkSqrtImageFilter.h
itkSquaredDifferenceImageFilter.h
itkTimeProbesCollectorBase.h
itkTransformFileWriter.h
itkVersorRigid3DTransform.h
itk::GTest::TypedefsAndConstructors::Dimension2::RegionType
ImageBaseType::RegionType RegionType
Definition:
itkGTestTypedefsAndConstructors.h:54
itk::GTest::TypedefsAndConstructors::Dimension2::IndexType
ImageBaseType::IndexType IndexType
Definition:
itkGTestTypedefsAndConstructors.h:50
itk::GTest::TypedefsAndConstructors::Dimension2::VectorType
ImageBaseType::SpacingType VectorType
Definition:
itkGTestTypedefsAndConstructors.h:53
itk::TransformFileWriter
itk::TransformFileWriterTemplate< double > TransformFileWriter
Definition:
itkTransformFileWriter.h:135
itk::Command
class ITK_FORWARD_EXPORT Command
Definition:
itkObject.h:42
Generated on
unknown
for ITK by
1.9.3