ITK
6.0.0
Insight Toolkit
Examples/RegistrationITKv4/ImageRegistration2.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1SliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceShifted13x17y.png}
// OUTPUTS: {ImageRegistration2Output.png}
// OUTPUTS: {ImageRegistration2CheckerboardBefore.png}
// OUTPUTS: {ImageRegistration2CheckerboardAfter.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// The following simple example illustrates how multiple imaging modalities
// can be registered using the ITK registration framework. The first
// difference between this and previous examples is the use of the
// \doxygen{MutualInformationImageToImageMetric} as the cost-function to be
// optimized. The second difference is the use of the
// \doxygen{GradientDescentOptimizer}. Due to the stochastic nature of the
// metric computation, the values are too noisy to work successfully with the
// \doxygen{RegularStepGradientDescentOptimizer}. Therefore, we will use the
// simpler GradientDescentOptimizer with a user defined learning rate. The
// following headers declare the basic components of this registration method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkImageRegistrationMethod.h
"
#include "
itkTranslationTransform.h
"
#include "
itkMutualInformationImageToImageMetric.h
"
#include "
itkGradientDescentOptimizer.h
"
// Software Guide : EndCodeSnippet
#include "
itkMersenneTwisterRandomVariateGenerator.h
"
// Software Guide : BeginLatex
//
// One way to simplify the computation of the mutual information is
// to normalize the statistical distribution of the two input images. The
// \doxygen{NormalizeImageFilter} is the perfect tool for this task.
// It rescales the intensities of the input images in order to produce an
// output image with zero mean and unit variance. This filter has been
// discussed in Section \ref{sec:CastingImageFilters}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkNormalizeImageFilter.h
"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Additionally, low-pass filtering of the images to be registered will also
// increase robustness against noise. In this example, we will use the
// \doxygen{DiscreteGaussianImageFilter} for that purpose. The
// characteristics of this filter have been discussed in Section
// \ref{sec:BlurringFilters}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkDiscreteGaussianImageFilter.h
"
// Software Guide : EndCodeSnippet
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
#include "
itkCheckerBoardImageFilter.h
"
// The following section of code implements a Command observer
// that will monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
using
Self
= CommandIterationUpdate;
using
Superclass
=
itk::Command
;
using
Pointer
=
itk::SmartPointer<Self>
;
itkNewMacro(
Self
);
protected
:
CommandIterationUpdate() =
default
;
public
:
using
OptimizerType =
itk::GradientDescentOptimizer
;
using
OptimizerPointer =
const
OptimizerType *;
void
Execute
(
itk::Object
* caller,
const
itk::EventObject
& event)
override
{
Execute
((
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
override
{
auto
optimizer =
static_cast<
OptimizerPointer
>
(object);
if
(!itk::IterationEvent().CheckEvent(&event))
{
return
;
}
std::cout << optimizer->GetCurrentIteration() <<
" "
;
std::cout << optimizer->GetValue() <<
" "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(
int
argc,
char
* argv[])
{
if
(argc < 4)
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
"outputImagefile "
;
std::cerr <<
"[checkerBoardBefore] [checkerBoardAfter]"
<< std::endl;
return
EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The moving and fixed images types should be instantiated first.
//
// Software Guide : EndLatex
//
// Software Guide : BeginCodeSnippet
constexpr
unsigned
int
Dimension
= 2;
using
PixelType =
unsigned
short;
using
FixedImageType =
itk::Image<PixelType, Dimension>
;
using
MovingImageType =
itk::Image<PixelType, Dimension>
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// It is convenient to work with an internal image type because mutual
// information will perform better on images with a normalized statistical
// distribution. The fixed and moving images will be normalized and
// converted to this internal type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
InternalPixelType = float;
using
InternalImageType =
itk::Image<InternalPixelType, Dimension>
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The rest of the image registration components are instantiated as
// illustrated in Section \ref{sec:IntroductionImageRegistration} with
// the use of the \code{InternalImageType}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
TransformType =
itk::TranslationTransform<double, Dimension>
;
using
OptimizerType =
itk::GradientDescentOptimizer
;
using
InterpolatorType =
itk::LinearInterpolateImageFunction<InternalImageType, double>
;
using
RegistrationType =
itk::ImageRegistrationMethod<InternalImageType, InternalImageType>
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The mutual information metric type is instantiated using the image
// types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
MetricType =
itk::MutualInformationImageToImageMetric
<InternalImageType,
InternalImageType>;
// Software Guide : EndCodeSnippet
auto
transform =
TransformType::New
();
auto
optimizer =
OptimizerType::New
();
auto
interpolator =
InterpolatorType::New
();
auto
registration =
RegistrationType::New
();
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);
// Software Guide : BeginLatex
//
// The metric is created using the \code{New()} method and then
// connected to the registration object.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto
metric =
MetricType::New
();
registration->SetMetric(metric);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The metric requires a number of parameters to be selected, including
// the standard deviation of the Gaussian kernel for the fixed image
// density estimate, the standard deviation of the kernel for the moving
// image density and the number of samples use to compute the densities
// and entropy values. Details on the concepts behind the computation of
// the metric can be found in Section
// \ref{sec:MutualInformationMetric}. Experience has
// shown that a kernel standard deviation of $0.4$ works well for images
// which have been normalized to a mean of zero and unit variance. We
// will follow this empirical rule in this example.
//
// \index{itk::Mutual\-Information\-Image\-To\-Image\-Metric!SetFixedImageStandardDeviation()}
// \index{itk::Mutual\-Information\-Image\-To\-Image\-Metric!SetMovingImageStandardDeviation()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
metric->SetFixedImageStandardDeviation(0.4);
metric->SetMovingImageStandardDeviation(0.4);
// Software Guide : EndCodeSnippet
using
FixedImageReaderType =
itk::ImageFileReader<FixedImageType>
;
using
MovingImageReaderType =
itk::ImageFileReader<MovingImageType>
;
auto
fixedImageReader =
FixedImageReaderType::New
();
auto
movingImageReader =
MovingImageReaderType::New
();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
// Software Guide : BeginLatex
//
// The normalization filters are instantiated using the fixed and moving
// image types as input and the internal image type as output.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
FixedNormalizeFilterType =
itk::NormalizeImageFilter<FixedImageType, InternalImageType>
;
using
MovingNormalizeFilterType =
itk::NormalizeImageFilter<MovingImageType, InternalImageType>
;
auto
fixedNormalizer =
FixedNormalizeFilterType::New
();
auto
movingNormalizer =
MovingNormalizeFilterType::New
();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The blurring filters are declared using the internal image type as both
// the input and output types. In this example, we will set the variance
// for both blurring filters to $2.0$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
GaussianFilterType =
itk::DiscreteGaussianImageFilter<InternalImageType, InternalImageType>
;
auto
fixedSmoother =
GaussianFilterType::New
();
auto
movingSmoother =
GaussianFilterType::New
();
fixedSmoother->SetVariance(2.0);
movingSmoother->SetVariance(2.0);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of the readers becomes the input to the normalization
// filters. The output of the normalization filters is connected as
// input to the blurring filters. The input to the registration method
// is taken from the blurring filters.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
fixedNormalizer->SetInput(fixedImageReader->GetOutput());
movingNormalizer->SetInput(movingImageReader->GetOutput());
fixedSmoother->SetInput(fixedNormalizer->GetOutput());
movingSmoother->SetInput(movingNormalizer->GetOutput());
registration->SetFixedImage(fixedSmoother->GetOutput());
registration->SetMovingImage(movingSmoother->GetOutput());
// Software Guide : EndCodeSnippet
fixedNormalizer->Update();
const
FixedImageType::RegionType
fixedImageRegion =
fixedNormalizer->GetOutput()->GetBufferedRegion();
registration->SetFixedImageRegion(fixedImageRegion);
using
ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters(transform->GetNumberOfParameters());
initialParameters[0] = 0.0;
// Initial offset in mm along X
initialParameters[1] = 0.0;
// Initial offset in mm along Y
registration->SetInitialTransformParameters(initialParameters);
// Software Guide : BeginLatex
//
// We should now define the number of spatial samples to be considered in
// the metric computation. Note that we were forced to postpone this
// setting until we had done the preprocessing of the images because the
// number of samples is usually defined as a fraction of the total number
// of pixels in the fixed image.
//
// The number of spatial samples can usually be as low as $1\%$ of the
// total number of pixels in the fixed image. Increasing the number of
// samples improves the smoothness of the metric from one iteration to
// another and therefore helps when this metric is used in conjunction with
// optimizers that rely of the continuity of the metric values. The
// trade-off, of course, is that a larger number of samples result in
// longer computation times per every evaluation of the metric.
//
// It has been demonstrated empirically that the number of samples is not a
// critical parameter for the registration process. When you start fine
// tuning your own registration process, you should start using high values
// of number of samples, for example in the range of $20\%$ to $50\%$ of
// the number of pixels in the fixed image. Once you have succeeded to
// register your images you can then reduce the number of samples
// progressively until you find a good compromise on the time it takes to
// compute one evaluation of the Metric. Note that it is not useful to have
// very fast evaluations of the Metric if the noise in their values results
// in more iterations being required by the optimizer to converge. You must
// then study the behavior of the metric values as the iterations progress,
// just as illustrated in section~\ref{sec:MonitoringImageRegistration}.
//
// \index{itk::Mutual\-Information\-Image\-To\-Image\-Metric!SetNumberOfSpatialSamples()}
// \index{itk::Mutual\-Information\-Image\-To\-Image\-Metric!Trade-offs}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const
unsigned
int
numberOfPixels = fixedImageRegion.GetNumberOfPixels();
const
auto
numberOfSamples =
static_cast<
unsigned
int
>
(numberOfPixels * 0.01);
metric->SetNumberOfSpatialSamples(numberOfSamples);
// Software Guide : EndCodeSnippet
// For consistent results when regression testing.
metric->ReinitializeSeed(121212);
// Software Guide : BeginLatex
//
// Since larger values of mutual information indicate better matches than
// smaller values, we need to maximize the cost function in this example.
// By default the GradientDescentOptimizer class is set to minimize the
// value of the cost-function. It is therefore necessary to modify its
// default behavior by invoking the \code{MaximizeOn()} method.
// Additionally, we need to define the optimizer's step size using the
// \code{SetLearningRate()} method.
//
// \index{itk::Gradient\-Descent\-Optimizer!MaximizeOn()}
// \index{itk::Image\-Registration\-Method!Maximize vs Minimize}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetLearningRate(15.0);
optimizer->SetNumberOfIterations(200);
optimizer->MaximizeOn();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that large values of the learning rate will make the optimizer
// unstable. Small values, on the other hand, may result in the optimizer
// needing too many iterations in order to walk to the extrema of the cost
// function. The easy way of fine tuning this parameter is to start with
// small values, probably in the range of $\{5.0,10.0\}$. Once the other
// registration parameters have been tuned for producing convergence, you
// may want to revisit the learning rate and start increasing its value
// until you observe that the optimization becomes unstable. The ideal
// value for this parameter is the one that results in a minimum number of
// iterations while still keeping a stable path on the parametric space of
// the optimization. Keep in mind that this parameter is a multiplicative
// factor applied on the gradient of the Metric. Therefore, its effect on
// the optimizer step length is proportional to the Metric values
// themselves. Metrics with large values will require you to use smaller
// values for the learning rate in order to maintain a similar optimizer
// behavior.
//
// Software Guide : EndLatex
// Create the Command observer and register it with the optimizer.
//
auto
observer =
CommandIterationUpdate::New
();
optimizer->AddObserver(itk::IterationEvent(), observer);
try
{
registration->Update();
std::cout <<
"Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
const
itk::ExceptionObject
& err)
{
std::cout <<
"ExceptionObject caught !"
<< std::endl;
std::cout << err << std::endl;
return
EXIT_FAILURE;
}
ParametersType finalParameters = registration->GetLastTransformParameters();
const
double
TranslationAlongX = finalParameters[0];
const
double
TranslationAlongY = finalParameters[1];
const
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
const
double
bestValue = optimizer->GetValue();
// Print out results
//
std::cout << std::endl;
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Translation X = "
<< TranslationAlongX << std::endl;
std::cout <<
" Translation Y = "
<< TranslationAlongY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
std::cout <<
" Numb. Samples = "
<< numberOfSamples << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over two of the images provided in
// \code{Examples/Data}:
//
// \begin{itemize}
// \item \code{BrainT1SliceBorder20.png}
// \item \code{BrainProtonDensitySliceShifted13x17y.png}
// \end{itemize}
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainT1SliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceShifted13x17y}
// \itkcaption[Multi-Modality Registration Inputs]{A T1 MRI (fixed image)
// and a proton density MRI (moving image) are provided as input to the
// registration method.} \label{fig:FixedMovingImageRegistration2}
// \end{figure}
//
// The second image is the result of intentionally translating the image
// \code{Brain\-Proton\-Density\-Slice\-Border20.png} by $(13,17)$
// millimeters. Both images have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingImageRegistration2}. The registration is stopped at
// 200 iterations and produces as result the parameters:
//
// \begin{verbatim}
// Translation X = 12.9147
// Translation Y = 17.0871
// \end{verbatim}
// These values are approximately within one tenth of a pixel from the true
// misalignment introduced in the moving image.
//
// Software Guide : EndLatex
using
ResampleFilterType =
itk::ResampleImageFilter<MovingImageType, FixedImageType>
;
auto
finalTransform =
TransformType::New
();
finalTransform->SetParameters(finalParameters);
finalTransform->SetFixedParameters(transform->GetFixedParameters());
auto
resample =
ResampleFilterType::New
();
resample->SetTransform(finalTransform);
resample->SetInput(movingImageReader->GetOutput());
const
FixedImageType::Pointer
fixedImage = fixedImageReader->GetOutput();
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
using
OutputPixelType =
unsigned
char;
using
OutputImageType =
itk::Image<OutputPixelType, Dimension>
;
using
CastFilterType =
itk::CastImageFilter<FixedImageType, OutputImageType>
;
using
WriterType =
itk::ImageFileWriter<OutputImageType>
;
auto
writer =
WriterType::New
();
auto
caster =
CastFilterType::New
();
writer->SetFileName(argv[3]);
caster->SetInput(resample->GetOutput());
writer->SetInput(caster->GetOutput());
writer->Update();
// Generate checkerboards before and after registration
//
using
CheckerBoardFilterType =
itk::CheckerBoardImageFilter<FixedImageType>
;
auto
checker =
CheckerBoardFilterType::New
();
checker->SetInput1(fixedImage);
checker->SetInput2(resample->GetOutput());
caster->SetInput(checker->GetOutput());
writer->SetInput(caster->GetOutput());
// Before registration
auto
identityTransform =
TransformType::New
();
identityTransform->SetIdentity();
resample->SetTransform(identityTransform);
if
(argc > 4)
{
writer->SetFileName(argv[4]);
writer->Update();
}
// After registration
resample->SetTransform(finalTransform);
if
(argc > 5)
{
writer->SetFileName(argv[5]);
writer->Update();
}
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration2Output}
// \includegraphics[width=0.32\textwidth]{ImageRegistration2CheckerboardBefore}
// \includegraphics[width=0.32\textwidth]{ImageRegistration2CheckerboardAfter}
// \itkcaption[Multi-Modality Registration outputs]{Mapped moving image
// (left) and composition of fixed and moving images before (center) and
// after (right) registration.} \label{fig:ImageRegistration2Output}
// \end{figure}
//
// The moving image after resampling is presented on the left
// side of Figure \ref{fig:ImageRegistration2Output}. The center and right
// figures present a checkerboard composite of the fixed and
// moving images before and after registration.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{ImageRegistration2TraceTranslations}
// \includegraphics[width=0.44\textwidth]{ImageRegistration2TraceTranslations2}
// \itkcaption[Multi-Modality Registration plot of translations]{Sequence of
// translations during the registration process. On the left are iterations
// 0 to 200. On the right are iterations 150 to 200.}
// \label{fig:ImageRegistration2TraceTranslations}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration2TraceTranslations} shows the sequence
// of translations followed by the optimizer as it searched the parameter
// space. The left plot shows iterations $0$ to $200$ while the right
// figure zooms into iterations $150$ to $200$. The area covered by the
// right figure has been highlighted by a rectangle in the left image. It
// can be seen that after a certain number of iterations the optimizer
// oscillates within one or two pixels of the true solution. At this
// point it is clear that more iterations will not help. Instead it is
// time to modify some of the parameters of the registration process, for
// example, reducing the learning rate of the optimizer and continuing the
// registration so that smaller steps are taken.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{ImageRegistration2TraceMetric}
// \includegraphics[width=0.44\textwidth]{ImageRegistration2TraceMetric2}
// \itkcaption[Multi-Modality Registration plot of metrics]{The sequence of
// metric values produced during the registration process. On the left are
// iterations 0 to 200. On the right are iterations 150 to 200.}
// \label{fig:ImageRegistration2TraceMetric}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration2TraceMetric} shows the sequence of
// metric values computed as the optimizer searched the parameter space.
// The left plot shows values when iterations are extended from $0$ to
// $200$ while the right figure zooms into iterations $150$ to $200$. The
// fluctuations in the metric value are due to the stochastic nature in
// which the measure is computed. At each call of \code{GetValue()}, two
// new sets of intensity samples are randomly taken from the image to
// compute the density and entropy estimates. Even with the fluctuations,
// the measure initially increases overall with the number of iterations.
// After about 150 iterations, the metric value merely oscillates without
// further noticeable convergence. The trace plots in Figure
// \ref{fig:ImageRegistration2TraceMetric} highlight one of the
// difficulties associated with this particular metric: the stochastic
// oscillations make it difficult to determine convergence and limit the
// use of more sophisticated optimization methods. As explained above,
// the reduction of the learning rate as the registration progresses is
// very important in order to get precise results.
//
// This example shows the importance of tracking the evolution of the
// registration method in order to obtain insight into the characteristics
// of the particular problem at hand and the components being used. The
// behavior revealed by these plots usually helps to identify possible
// improvements in the setup of the registration parameters.
//
// The plots in Figures~\ref{fig:ImageRegistration2TraceTranslations}
// and~\ref{fig:ImageRegistration2TraceMetric} were generated using
// Gnuplot\footnote{\url{http://www.gnuplot.info/}}. The scripts used for
// this purpose are available in the \code{ITKSoftwareGuide} Git repository
// under the directory
//
// ~\code{ITKSoftwareGuide/SoftwareGuide/Art}.
//
// Data for the plots was taken directly from the output that the
// Command/Observer in this example prints out to the console. The output
// was processed with the UNIX editor
// \code{sed}\footnote{\url{https://www.gnu.org/software/sed/sed.html}} in
// order to remove commas and brackets that were confusing for Gnuplot's
// parser. Both the shell script for running \code{sed} and for running
// {Gnuplot} are available in the directory indicated above. You may find
// useful to run them in order to verify the results presented here, and to
// eventually modify them for profiling your own registrations.
//
// \index{Open Science}
//
// Open Science is not just an abstract concept. Open Science is something
// to be practiced every day with the simple gesture of sharing information
// with your peers, and by providing all the tools that they need for
// replicating the results that you are reporting. In Open Science, the
// only bad results are those that can not be
// replicated\footnote{\url{http://science.creativecommons.org/}}. Science
// is dead when people blindly trust authorities~\footnote{For example:
// Reviewers of Scientific Journals.} instead of verifying their statements
// by performing their own experiments ~\cite{Popper1971,Popper2002}.
//
// Software Guide : EndLatex
return
EXIT_SUCCESS;
}
AddImageFilter
Pixel-wise addition of two images.
itk::CastImageFilter
Casts input pixels to output pixel type.
Definition:
itkCastImageFilter.h:101
itk::CheckerBoardImageFilter
Combines two images in a checkerboard pattern.
Definition:
itkCheckerBoardImageFilter.h:46
itk::Command
Superclass for callback/observer methods.
Definition:
itkCommand.h:46
itk::Command::Execute
virtual void Execute(Object *caller, const EventObject &event)=0
itk::DiscreteGaussianImageFilter
Blurs an image by separable convolution with discrete gaussian kernels. This filter performs Gaussian...
Definition:
itkDiscreteGaussianImageFilter.h:65
itk::EventObject
Abstraction of the Events used to communicating among filters and with GUIs.
Definition:
itkEventObject.h:59
itk::ExceptionObject
Standard exception handling object.
Definition:
itkExceptionObject.h:51
itk::GradientDescentOptimizer
Implement a gradient descent optimizer.
Definition:
itkGradientDescentOptimizer.h:73
itk::ImageFileReader
Data source that reads image data from a single file.
Definition:
itkImageFileReader.h:76
itk::ImageFileWriter
Writes image data to a single file.
Definition:
itkImageFileWriter.h:91
itk::ImageRegistrationMethod
Base class for Image Registration Methods.
Definition:
itkImageRegistrationMethod.h:71
itk::Image
Templated n-dimensional image class.
Definition:
itkImage.h:89
itk::LinearInterpolateImageFunction
Linearly interpolate an image at specified positions.
Definition:
itkLinearInterpolateImageFunction.h:52
itk::MutualInformationImageToImageMetric
Computes the mutual information between two images to be registered.
Definition:
itkMutualInformationImageToImageMetric.h:95
itk::NormalizeImageFilter
Normalize an image by setting its mean to zero and variance to one.
Definition:
itkNormalizeImageFilter.h:55
itk::Object
Base class for most ITK classes.
Definition:
itkObject.h:62
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition:
itkResampleImageFilter.h:91
itk::SmartPointer< Self >
itk::TranslationTransform
Translation transformation of a vector space (e.g. space coordinates)
Definition:
itkTranslationTransform.h:44
New
static Pointer New()
Superclass
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
Definition:
itkAddImageFilter.h:90
Pointer
SmartPointer< Self > Pointer
Definition:
itkAddImageFilter.h:93
itkCastImageFilter.h
itkCheckerBoardImageFilter.h
itkCommand.h
itkDiscreteGaussianImageFilter.h
itkGradientDescentOptimizer.h
itkImageFileReader.h
itkImageFileWriter.h
itkImageRegistrationMethod.h
itkMersenneTwisterRandomVariateGenerator.h
itkMutualInformationImageToImageMetric.h
itkNormalizeImageFilter.h
itkResampleImageFilter.h
itkTranslationTransform.h
itk::GTest::TypedefsAndConstructors::Dimension2::RegionType
ImageBaseType::RegionType RegionType
Definition:
itkGTestTypedefsAndConstructors.h:54
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition:
itkGTestTypedefsAndConstructors.h:44
itk::Command
class ITK_FORWARD_EXPORT Command
Definition:
itkObject.h:42
Generated on
unknown
for ITK by
1.9.3