{
public:
using Self = CommandIterationUpdate;
protected:
CommandIterationUpdate() = default;
public:
using OptimizerPointer = const OptimizerType *;
void
{
}
void
{
auto optimizer = static_cast<OptimizerPointer>(object);
if (!itk::IterationEvent().CheckEvent(&event))
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(int argc, char * argv[])
{
if (argc < 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << "outputImagefile ";
std::cerr << "[checkerBoardBefore] [checkerBoardAfter]" << std::endl;
return EXIT_FAILURE;
}
using PixelType = unsigned short;
using InternalPixelType = float;
using InterpolatorType =
using RegistrationType =
using MetricType =
InternalImageType>;
auto transform = TransformType::New();
auto optimizer = OptimizerType::New();
auto interpolator = InterpolatorType::New();
auto registration = RegistrationType::New();
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);
auto metric = MetricType::New();
registration->SetMetric(metric);
metric->SetFixedImageStandardDeviation(0.4);
metric->SetMovingImageStandardDeviation(0.4);
auto fixedImageReader = FixedImageReaderType::New();
auto movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
using FixedNormalizeFilterType =
using MovingNormalizeFilterType =
auto fixedNormalizer = FixedNormalizeFilterType::New();
auto movingNormalizer = MovingNormalizeFilterType::New();
using GaussianFilterType =
auto fixedSmoother = GaussianFilterType::New();
auto movingSmoother = GaussianFilterType::New();
fixedSmoother->SetVariance(2.0);
movingSmoother->SetVariance(2.0);
fixedNormalizer->SetInput(fixedImageReader->GetOutput());
movingNormalizer->SetInput(movingImageReader->GetOutput());
fixedSmoother->SetInput(fixedNormalizer->GetOutput());
movingSmoother->SetInput(movingNormalizer->GetOutput());
registration->SetFixedImage(fixedSmoother->GetOutput());
registration->SetMovingImage(movingSmoother->GetOutput());
fixedNormalizer->Update();
const FixedImageType::RegionType fixedImageRegion =
fixedNormalizer->GetOutput()->GetBufferedRegion();
registration->SetFixedImageRegion(fixedImageRegion);
using ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters(transform->GetNumberOfParameters());
initialParameters[0] = 0.0;
initialParameters[1] = 0.0;
registration->SetInitialTransformParameters(initialParameters);
const unsigned int numberOfPixels = fixedImageRegion.GetNumberOfPixels();
const auto numberOfSamples =
static_cast<unsigned int>(numberOfPixels * 0.01);
metric->SetNumberOfSpatialSamples(numberOfSamples);
metric->ReinitializeSeed(121212);
optimizer->SetLearningRate(15.0);
optimizer->SetNumberOfIterations(200);
optimizer->MaximizeOn();
auto observer = CommandIterationUpdate::New();
optimizer->AddObserver(itk::IterationEvent(), observer);
try
{
registration->Update();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
ParametersType finalParameters = registration->GetLastTransformParameters();
const double TranslationAlongX = finalParameters[0];
const double TranslationAlongY = finalParameters[1];
const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
const double bestValue = optimizer->GetValue();
std::cout << std::endl;
std::cout << "Result = " << std::endl;
std::cout << " Translation X = " << TranslationAlongX << std::endl;
std::cout << " Translation Y = " << TranslationAlongY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
std::cout << " Numb. Samples = " << numberOfSamples << std::endl;
using ResampleFilterType =
auto finalTransform = TransformType::New();
finalTransform->SetParameters(finalParameters);
finalTransform->SetFixedParameters(transform->GetFixedParameters());
auto resample = ResampleFilterType::New();
resample->SetTransform(finalTransform);
resample->SetInput(movingImageReader->GetOutput());
const FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
using OutputPixelType = unsigned char;
using CastFilterType =
auto writer = WriterType::New();
auto caster = CastFilterType::New();
writer->SetFileName(argv[3]);
caster->SetInput(resample->GetOutput());
writer->SetInput(caster->GetOutput());
writer->Update();
auto checker = CheckerBoardFilterType::New();
checker->SetInput1(fixedImage);
checker->SetInput2(resample->GetOutput());
caster->SetInput(checker->GetOutput());
writer->SetInput(caster->GetOutput());
auto identityTransform = TransformType::New();
identityTransform->SetIdentity();
resample->SetTransform(identityTransform);
if (argc > 4)
{
writer->SetFileName(argv[4]);
writer->Update();
}
resample->SetTransform(finalTransform);
if (argc > 5)
{
writer->SetFileName(argv[5]);
writer->Update();
}
return EXIT_SUCCESS;
}
Casts input pixels to output pixel type.
Combines two images in a checkerboard pattern.
Superclass for callback/observer methods.
virtual void Execute(Object *caller, const EventObject &event)=0
Blurs an image by separable convolution with discrete gaussian kernels. This filter performs Gaussian...
Abstraction of the Events used to communicating among filters and with GUIs.
Standard exception handling object.
Implement a gradient descent optimizer.
Data source that reads image data from a single file.
Writes image data to a single file.
Base class for Image Registration Methods.
Templated n-dimensional image class.
Linearly interpolate an image at specified positions.
Normalize an image by setting its mean to zero and variance to one.
Base class for most ITK classes.
Resample an image via a coordinate transform.
Implements transparent reference counting.
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
constexpr unsigned int Dimension