ITK  6.0.0
Insight Toolkit
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | Private Attributes | List of all members

#include <itkGradientDescentOptimizer.h>

Detailed Description

Implement a gradient descent optimizer.

GradientDescentOptimizer implements a simple gradient descent optimizer. At each iteration the current position is updated according to

\[ p_{n+1} = p_n + \mbox{learningRate} \, \frac{\partial f(p_n) }{\partial p_n} \]

The learning rate is a fixed scalar defined via SetLearningRate(). The optimizer steps through a user defined number of iterations; no convergence checking is done.

Additionally, user can scale each component, \( \partial f / \partial p \), by setting a scaling vector using method SetScale().

See also
RegularStepGradientDescentOptimizer

Definition at line 72 of file itkGradientDescentOptimizer.h.

+ Inheritance diagram for itk::GradientDescentOptimizer:
+ Collaboration diagram for itk::GradientDescentOptimizer:

Public Types

using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = GradientDescentOptimizer
 
using StopConditionGradientDescentOptimizerEnum = GradientDescentOptimizerEnums::StopConditionGradientDescentOptimizer
 
using Superclass = SingleValuedNonLinearOptimizer
 
- Public Types inherited from itk::SingleValuedNonLinearOptimizer
using ConstPointer = SmartPointer< const Self >
 
using CostFunctionPointer = CostFunctionType::Pointer
 
using CostFunctionType = SingleValuedCostFunction
 
using DerivativeType = CostFunctionType::DerivativeType
 
using MeasureType = CostFunctionType::MeasureType
 
using ParametersType = Superclass::ParametersType
 
using Pointer = SmartPointer< Self >
 
using Self = SingleValuedNonLinearOptimizer
 
using Superclass = NonLinearOptimizer
 
- Public Types inherited from itk::NonLinearOptimizer
using ConstPointer = SmartPointer< const Self >
 
using ParametersType = Superclass::ParametersType
 
using Pointer = SmartPointer< Self >
 
using ScalesType = Superclass::ScalesType
 
using Self = NonLinearOptimizer
 
using Superclass = Optimizer
 
- Public Types inherited from itk::Optimizer
using ConstPointer = SmartPointer< const Self >
 
using ParametersType = OptimizerParameters< double >
 
using Pointer = SmartPointer< Self >
 
using ScalesType = Array< double >
 
using Self = Optimizer
 
using Superclass = Object
 
- Public Types inherited from itk::Object
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = Object
 
using Superclass = LightObject
 
- Public Types inherited from itk::LightObject
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = LightObject
 

Public Member Functions

virtual void AdvanceOneStep ()
 
virtual SizeValueType GetCurrentIteration () const
 
virtual const DerivativeTypeGetGradient () const
 
virtual const double & GetLearningRate () const
 
const char * GetNameOfClass () const override
 
virtual const SizeValueTypeGetNumberOfIterations () const
 
virtual const double & GetValue () const
 
void ResumeOptimization ()
 
virtual void SetLearningRate (double _arg)
 
virtual void SetNumberOfIterations (SizeValueType _arg)
 
void StartOptimization () override
 
void StopOptimization ()
 
virtual const bool & GetMaximize () const
 
virtual void SetMaximize (bool _arg)
 
virtual void MaximizeOn ()
 
bool GetMinimize () const
 
void SetMinimize (bool v)
 
void MinimizeOn ()
 
void MinimizeOff ()
 
virtual const StopConditionGradientDescentOptimizerEnumGetStopCondition () const
 
std::string GetStopConditionDescription () const override
 
- Public Member Functions inherited from itk::SingleValuedNonLinearOptimizer
virtual CostFunctionTypeGetModifiableCostFunction ()
 
const char * GetNameOfClass () const override
 
MeasureType GetValue (const ParametersType &parameters) const
 
virtual void SetCostFunction (CostFunctionType *costFunction)
 
const char * GetNameOfClass () const override
 
- Public Member Functions inherited from itk::Optimizer
virtual const ParametersTypeGetCurrentPosition () const
 
virtual const ParametersTypeGetInitialPosition () const
 
const char * GetNameOfClass () const override
 
virtual std::string GetStopConditionDescription () const
 
virtual void SetInitialPosition (const ParametersType &param)
 
void SetScales (const ScalesType &scales)
 
virtual void StartOptimization ()
 
virtual const ScalesTypeGetScales () const
 
virtual const ScalesTypeGetInverseScales () const
 
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *cmd) const
 
unsigned long AddObserver (const EventObject &event, std::function< void(const EventObject &)> function) const
 
LightObject::Pointer CreateAnother () const override
 
virtual void DebugOff () const
 
virtual void DebugOn () const
 
CommandGetCommand (unsigned long tag)
 
bool GetDebug () const
 
MetaDataDictionaryGetMetaDataDictionary ()
 
const MetaDataDictionaryGetMetaDataDictionary () const
 
virtual ModifiedTimeType GetMTime () const
 
const char * GetNameOfClass () const override
 
virtual const TimeStampGetTimeStamp () const
 
bool HasObserver (const EventObject &event) const
 
void InvokeEvent (const EventObject &)
 
void InvokeEvent (const EventObject &) const
 
virtual void Modified () const
 
void Register () const override
 
void RemoveAllObservers ()
 
void RemoveObserver (unsigned long tag) const
 
void SetDebug (bool debugFlag) const
 
void SetReferenceCount (int) override
 
void UnRegister () const noexcept override
 
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
 
void SetMetaDataDictionary (MetaDataDictionary &&rrhs)
 
virtual void SetObjectName (std::string _arg)
 
virtual const std::string & GetObjectName () const
 
- Public Member Functions inherited from itk::LightObject
Pointer Clone () const
 
virtual Pointer CreateAnother () const
 
virtual void Delete ()
 
virtual const char * GetNameOfClass () const
 
virtual int GetReferenceCount () const
 
void Print (std::ostream &os, Indent indent=0) const
 
virtual void Register () const
 
virtual void SetReferenceCount (int)
 
virtual void UnRegister () const noexcept
 

Static Public Member Functions

static Pointer New ()
 
- Static Public Member Functions inherited from itk::SingleValuedNonLinearOptimizer
static Pointer New ()
 
- Static Public Member Functions inherited from itk::NonLinearOptimizer
static Pointer New ()
 
- Static Public Member Functions inherited from itk::Optimizer
static Pointer New ()
 
- Static Public Member Functions inherited from itk::Object
static bool GetGlobalWarningDisplay ()
 
static void GlobalWarningDisplayOff ()
 
static void GlobalWarningDisplayOn ()
 
static Pointer New ()
 
static void SetGlobalWarningDisplay (bool val)
 
- Static Public Member Functions inherited from itk::LightObject
static void BreakOnError ()
 
static Pointer New ()
 

Protected Member Functions

 GradientDescentOptimizer ()
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
 ~GradientDescentOptimizer () override=default
 
- Protected Member Functions inherited from itk::SingleValuedNonLinearOptimizer
void PrintSelf (std::ostream &os, Indent indent) const override
 
 SingleValuedNonLinearOptimizer ()
 
 ~SingleValuedNonLinearOptimizer () override=default
 
- Protected Member Functions inherited from itk::NonLinearOptimizer
 NonLinearOptimizer ()=default
 
 ~NonLinearOptimizer () override
 
- Protected Member Functions inherited from itk::Optimizer
 Optimizer ()
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
virtual void SetCurrentPosition (const ParametersType &param)
 
 ~Optimizer () override=default
 
- Protected Member Functions inherited from itk::Object
 Object ()
 
bool PrintObservers (std::ostream &os, Indent indent) const
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
virtual void SetTimeStamp (const TimeStamp &timeStamp)
 
 ~Object () override
 
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 
 LightObject ()
 
virtual void PrintHeader (std::ostream &os, Indent indent) const
 
virtual void PrintSelf (std::ostream &os, Indent indent) const
 
virtual void PrintTrailer (std::ostream &os, Indent indent) const
 
virtual ~LightObject ()
 

Protected Attributes

DerivativeType m_Gradient {}
 
double m_LearningRate { 1.0 }
 
bool m_Maximize { false }
 
- Protected Attributes inherited from itk::SingleValuedNonLinearOptimizer
CostFunctionPointer m_CostFunction {}
 
- Protected Attributes inherited from itk::Optimizer
ParametersType m_CurrentPosition {}
 
bool m_ScalesInitialized { false }
 
- Protected Attributes inherited from itk::LightObject
std::atomic< int > m_ReferenceCount {}
 

Private Attributes

SizeValueType m_CurrentIteration { 0 }
 
SizeValueType m_NumberOfIterations { 100 }
 
bool m_Stop { false }
 
StopConditionGradientDescentOptimizerEnum m_StopCondition
 
std::ostringstream m_StopConditionDescription {}
 
double m_Value { 0.0 }
 

Member Typedef Documentation

◆ ConstPointer

Definition at line 81 of file itkGradientDescentOptimizer.h.

◆ Pointer

Definition at line 80 of file itkGradientDescentOptimizer.h.

◆ Self

Standard class type aliases.

Definition at line 78 of file itkGradientDescentOptimizer.h.

◆ StopConditionGradientDescentOptimizerEnum

Definition at line 89 of file itkGradientDescentOptimizer.h.

◆ Superclass

Definition at line 79 of file itkGradientDescentOptimizer.h.

Constructor & Destructor Documentation

◆ GradientDescentOptimizer()

itk::GradientDescentOptimizer::GradientDescentOptimizer ( )
protected

◆ ~GradientDescentOptimizer()

itk::GradientDescentOptimizer::~GradientDescentOptimizer ( )
overrideprotecteddefault

Member Function Documentation

◆ AdvanceOneStep()

virtual void itk::GradientDescentOptimizer::AdvanceOneStep ( )
virtual

Advance one step following the gradient direction.

Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.

◆ GetCurrentIteration()

virtual SizeValueType itk::GradientDescentOptimizer::GetCurrentIteration ( ) const
virtual

Get the current iteration number.

◆ GetGradient()

virtual const DerivativeType & itk::GradientDescentOptimizer::GetGradient ( ) const
virtual

Get Gradient condition.

◆ GetLearningRate()

virtual const double & itk::GradientDescentOptimizer::GetLearningRate ( ) const
virtual

Get the learning rate.

◆ GetMaximize()

virtual const bool & itk::GradientDescentOptimizer::GetMaximize ( ) const
virtual

Methods to configure the cost function.

◆ GetMinimize()

bool itk::GradientDescentOptimizer::GetMinimize ( ) const
inline

Methods to configure the cost function.

Definition at line 105 of file itkGradientDescentOptimizer.h.

◆ GetNameOfClass()

const char * itk::GradientDescentOptimizer::GetNameOfClass ( ) const
overridevirtual

◆ GetNumberOfIterations()

virtual const SizeValueType & itk::GradientDescentOptimizer::GetNumberOfIterations ( ) const
virtual

Get the number of iterations.

◆ GetStopCondition()

virtual const StopConditionGradientDescentOptimizerEnum & itk::GradientDescentOptimizer::GetStopCondition ( ) const
virtual

Get Stop condition.

◆ GetStopConditionDescription()

std::string itk::GradientDescentOptimizer::GetStopConditionDescription ( ) const
overridevirtual

Get Stop condition.

Reimplemented from itk::Optimizer.

◆ GetValue()

virtual const double & itk::GradientDescentOptimizer::GetValue ( ) const
virtual

Get the current value.

◆ MaximizeOn()

virtual void itk::GradientDescentOptimizer::MaximizeOn ( )
virtual

Methods to configure the cost function.

◆ MinimizeOff()

void itk::GradientDescentOptimizer::MinimizeOff ( )
inline

Methods to configure the cost function.

Definition at line 120 of file itkGradientDescentOptimizer.h.

◆ MinimizeOn()

void itk::GradientDescentOptimizer::MinimizeOn ( )
inline

Methods to configure the cost function.

Definition at line 115 of file itkGradientDescentOptimizer.h.

◆ New()

static Pointer itk::GradientDescentOptimizer::New ( )
static

Method for creation through the object factory.

◆ PrintSelf()

void itk::GradientDescentOptimizer::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
overrideprotectedvirtual

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::Object.

◆ ResumeOptimization()

void itk::GradientDescentOptimizer::ResumeOptimization ( )

Resume previously stopped optimization with current parameters

See also
StopOptimization.

◆ SetLearningRate()

virtual void itk::GradientDescentOptimizer::SetLearningRate ( double  _arg)
virtual

Set the learning rate.

◆ SetMaximize()

virtual void itk::GradientDescentOptimizer::SetMaximize ( bool  _arg)
virtual

Methods to configure the cost function.

◆ SetMinimize()

void itk::GradientDescentOptimizer::SetMinimize ( bool  v)
inline

Methods to configure the cost function.

Definition at line 110 of file itkGradientDescentOptimizer.h.

◆ SetNumberOfIterations()

virtual void itk::GradientDescentOptimizer::SetNumberOfIterations ( SizeValueType  _arg)
virtual

Set the number of iterations.

◆ StartOptimization()

void itk::GradientDescentOptimizer::StartOptimization ( )
overridevirtual

Start optimization.

Reimplemented from itk::Optimizer.

◆ StopOptimization()

void itk::GradientDescentOptimizer::StopOptimization ( )

Stop optimization.

See also
ResumeOptimization

Member Data Documentation

◆ m_CurrentIteration

SizeValueType itk::GradientDescentOptimizer::m_CurrentIteration { 0 }
private

Definition at line 191 of file itkGradientDescentOptimizer.h.

◆ m_Gradient

DerivativeType itk::GradientDescentOptimizer::m_Gradient {}
protected

Definition at line 178 of file itkGradientDescentOptimizer.h.

◆ m_LearningRate

double itk::GradientDescentOptimizer::m_LearningRate { 1.0 }
protected

Definition at line 182 of file itkGradientDescentOptimizer.h.

◆ m_Maximize

bool itk::GradientDescentOptimizer::m_Maximize { false }
protected

Definition at line 180 of file itkGradientDescentOptimizer.h.

◆ m_NumberOfIterations

SizeValueType itk::GradientDescentOptimizer::m_NumberOfIterations { 100 }
private

Definition at line 190 of file itkGradientDescentOptimizer.h.

◆ m_Stop

bool itk::GradientDescentOptimizer::m_Stop { false }
private

Definition at line 185 of file itkGradientDescentOptimizer.h.

◆ m_StopCondition

StopConditionGradientDescentOptimizerEnum itk::GradientDescentOptimizer::m_StopCondition
private

◆ m_StopConditionDescription

std::ostringstream itk::GradientDescentOptimizer::m_StopConditionDescription {}
private

Definition at line 192 of file itkGradientDescentOptimizer.h.

◆ m_Value

double itk::GradientDescentOptimizer::m_Value { 0.0 }
private

Definition at line 186 of file itkGradientDescentOptimizer.h.


The documentation for this class was generated from the following file: