ITK  6.0.0
Insight Toolkit
Examples/Segmentation/GeodesicActiveContourShapePriorLevelSetImageFilter.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// In medical imaging applications, the general shape, location and
// orientation of an anatomical structure of interest is typically
// known \emph{a priori}. This information can be used to aid the
// segmentation process especially when image contrast is low or
// when the object boundary is not distinct.
//
// In \cite{Leventon2000}, Leventon \emph{et al.} extended the
// geodesic active contours method with an additional shape-influenced term in
// the driving PDE. The
// \doxygen{GeodesicActiveContourShapePriorLevelSetImageFilter} is a
// generalization of Leventon's approach and its use is illustrated in the
// following example.
//
// To support shape-guidance, the generic level set
// equation (Eqn(~\ref{eqn:LevelSetEquation})) is extended to incorporate a
// shape guidance term:
//
// \begin{equation}
// \label{eqn:ShapeInfluenceTerm}
// \xi \left(\psi^{*}(\mathbf{x}) - \psi(\mathbf{x})\right)
// \end{equation}
//
// where $\psi^{*}$ is the signed distance function of the ``best-fit'' shape
// with respect to a shape model. The new term has the effect of driving the
// contour towards the best-fit shape. The scalar $\xi$ weights the influence
// of the shape term in the overall evolution. In general, the best-fit shape
// is not known ahead of time and has to be iteratively estimated in
// conjunction with the contour evolution.
//
// As with the \doxygen{GeodesicActiveContourLevelSetImageFilter}, the
// GeodesicActiveContourShapePriorLevelSetImageFilter expects two input
// images: the first is an initial level set and the second a feature image
// that represents the image edge potential. The configuration of this
// example is quite similar to the example in
// Section~\ref{sec:GeodesicActiveContourImageFilter} and hence the
// description will focus on the new objects involved in the segmentation
// process as shown in
// Figure~\ref{fig:GeodesicActiveContourShapePriorCollaborationDiagram}.
//
// \begin{figure} \center
// \includegraphics[width=\textwidth]{GeodesicActiveContourShapePriorCollaborationDiagram}
// \itkcaption[GeodesicActiveContourShapePriorLevelSetImageFilter
// collaboration diagram]{Collaboration diagram for the
// GeodesicActiveContourShapePriorLevelSetImageFilter applied to a
// segmentation task.}
// \label{fig:GeodesicActiveContourShapePriorCollaborationDiagram}
// \end{figure}
//
// The process pipeline begins with centering the input image using the
// the \doxygen{ChangeInformationImageFilter} to simplify the estimation of
// the pose of the shape, to be explained later. The centered image is then
// smoothed using non-linear diffusion to remove noise and the gradient
// magnitude is computed from the smoothed image. For simplicity, this example
// uses the \doxygen{BoundedReciprocalImageFilter} to produce the edge
// potential image.
//
// The \doxygen{FastMarchingImageFilter} creates an initial level set using
// three user specified seed positions and an initial contour radius. Three
// seeds are used in this example to facilitate the segmentation of long
// narrow objects in a smaller number of iterations. The output of the
// FastMarchingImageFilter is passed as the input to the
// GeodesicActiveContourShapePriorLevelSetImageFilter. At then end of the
// segmentation process, the output level set is passed to the
// \doxygen{BinaryThresholdImageFilter} to produce a binary mask representing
// the segmented object.
//
// The remaining objects in
// Figure~\ref{fig:GeodesicActiveContourShapePriorCollaborationDiagram}
// are used for shape modeling and estimation.
// The \doxygen{PCAShapeSignedDistanceFunction} represents a statistical
// shape model defined by a mean signed distance and the first $K$
// principal components modes; while the \doxygen{Euler2DTransform} is used
// to represent the pose of the shape. In this implementation, the
// best-fit shape estimation problem is reformulated as a minimization problem
// where the \doxygen{ShapePriorMAPCostFunction} is the cost function to
// be optimized using the \doxygen{OnePlusOneEvolutionaryOptimizer}.
//
// It should be noted that, although particular shape model, transform
// cost function, and optimizer are used in this example, the implementation
// is generic, allowing different instances of these components to be
// plugged in. This flexibility allows a user to tailor the behavior of the
// segmentation process to suit the circumstances of the targeted application.
//
// Let's start the example by including the headers of the new filters
// involved in the segmentation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next, we include the headers of the objects involved in shape
// modeling and estimation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Given the numerous parameters involved in tuning this segmentation method
// it is not uncommon for a segmentation process to
// run for several minutes and still produce an unsatisfactory result. For
// debugging purposes it is quite helpful to track the evolution of the
// segmentation as it progresses. The following defines a
// custom \doxygen{Command} class
// for monitoring the RMS change and shape parameters at each iteration.
//
// \index{itk::Geodesic\-Active\-Contour\-Shape\-Prior\-LevelSet\-Image\-Filter!Monitoring}
// \index{itk::Shape\-Prior\-Segmentation\-Level\-Set\-Image\-Filter!Monitoring}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkCommand.h"
template <class TFilter>
class CommandIterationUpdate : public itk::Command
{
public:
using Self = CommandIterationUpdate;
itkNewMacro(Self);
protected:
CommandIterationUpdate() = default;
public:
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
const auto * filter = static_cast<const TFilter *>(object);
if (typeid(event) != typeid(itk::IterationEvent))
{
return;
}
std::cout << filter->GetElapsedIterations() << ": ";
std::cout << filter->GetRMSChange() << " ";
std::cout << filter->GetCurrentParameters() << std::endl;
}
};
// Software Guide : EndCodeSnippet
int
main(int argc, char * argv[])
{
if (argc < 18)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage outputImage";
std::cerr << " seed1X seed1Y";
std::cerr << " seed2X seed2Y";
std::cerr << " seed3X seed3Y";
std::cerr << " initialDistance";
std::cerr << " sigma";
std::cerr << " propagationScaling shapePriorScaling";
std::cerr << " meanShapeImage numberOfModes shapeModeFilePattern";
std::cerr << " startX startY" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We define the image type using a particular pixel type and
// dimension. In this case we will use 2D \code{float} images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using InternalPixelType = float;
constexpr unsigned int Dimension = 2;
using InternalImageType = itk::Image<InternalPixelType, Dimension>;
// Software Guide : EndCodeSnippet
// The following lines instantiate the thresholding filter that will
// process the final level set at the output of the
// GeodesicActiveContourLevelSetImageFilter.
//
using OutputPixelType = unsigned char;
using OutputImageType = itk::Image<OutputPixelType, Dimension>;
using ThresholdingFilterType =
auto thresholder = ThresholdingFilterType::New();
thresholder->SetLowerThreshold(-1000.0);
thresholder->SetUpperThreshold(0.0);
thresholder->SetOutsideValue(0);
thresholder->SetInsideValue(255);
// We instantiate reader and writer types in the following lines.
//
auto reader = ReaderType::New();
auto writer = WriterType::New();
reader->SetFileName(argv[1]);
writer->SetFileName(argv[2]);
// The RescaleIntensityImageFilter type is declared below. This filter will
// renormalize image before sending them to writers.
//
using CastFilterType =
// The \doxygen{CurvatureAnisotropicDiffusionImageFilter} type is
// instantiated using the internal image type.
//
using SmoothingFilterType =
InternalImageType>;
auto smoothing = SmoothingFilterType::New();
// The types of the
// GradientMagnitudeRecursiveGaussianImageFilter is
// instantiated using the internal image type.
//
using GradientFilterType =
InternalImageType>;
auto gradientMagnitude = GradientFilterType::New();
// We declare now the type of the FastMarchingImageFilter that
// will be used to generate the initial level set in the form of a distance
// map.
//
using FastMarchingFilterType =
// Next we construct one filter of this class using the \code{New()}
// method.
//
auto fastMarching = FastMarchingFilterType::New();
// Software Guide : BeginLatex
//
// The following line instantiate a
// \doxygen{GeodesicActiveContourShapePriorLevelSetImageFilter}
// using the \code{New()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using GeodesicActiveContourFilterType =
InternalImageType,
InternalImageType>;
auto geodesicActiveContour = GeodesicActiveContourFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \doxygen{ChangeInformationImageFilter} is the first filter in the
// preprocessing stage and is used to force the image origin to the center
// of the image.
//
// \index{itk::ChangeInformationImageFilter!CenterImageOn()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using CenterFilterType =
auto center = CenterFilterType::New();
center->CenterImageOn();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In this example, we will use the bounded reciprocal $1/(1+x)$ of
// the image gradient magnitude as the edge potential feature image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ReciprocalFilterType =
auto reciprocal = ReciprocalFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the GeodesicActiveContourShapePriorLevelSetImageFilter, scaling
// parameters are used to trade off between the propagation (inflation),
// the curvature (smoothing), the advection, and the shape influence terms.
// These parameters are set
// using methods \code{SetPropagationScaling()},
// \code{SetCurvatureScaling()}, \code{SetAdvectionScaling()} and
// \code{SetShapePriorScaling()}. In this
// example, we will set the curvature and advection scales to one and let
// the propagation and shape prior scale be command-line arguments.
//
// \index{itk::Geodesic\-Active\-Contour\-Shape\-Prior\-LevelSet\-Image\-Filter!SetPropagationScaling()}
// \index{itk::Shape\-Prior\-Segmentation\-Level\-Set\-Image\-Filter!SetPropagationScaling()}
// \index{itk::Geodesic\-Active\-Contour\-Shape\-Prior\-LevelSet\-Image\-Filter!SetCurvatureScaling()}
// \index{itk::Shape\-Prior\-Segmentation\-Level\-Set\-Image\-Filter!SetCurvatureScaling()}
// \index{itk::Geodesic\-Active\-Contour\-Shape\-Prior\-LevelSet\-Image\-Filter!SetAdvectionScaling()}
// \index{itk::Shape\-Prior\-Segmentation\-Level\-Set\-Image\-Filter!SetAdvectionScaling()}
//
// Software Guide : EndLatex
const double propagationScaling = std::stod(argv[11]);
const double shapePriorScaling = std::stod(argv[12]);
// Software Guide : BeginCodeSnippet
geodesicActiveContour->SetPropagationScaling(propagationScaling);
geodesicActiveContour->SetShapePriorScaling(shapePriorScaling);
geodesicActiveContour->SetCurvatureScaling(1.0);
geodesicActiveContour->SetAdvectionScaling(1.0);
// Software Guide : EndCodeSnippet
// Once activated the level set evolution will stop if the convergence
// criteria or if the maximum number of iterations is reached. The
// convergence criteria is defined in terms of the root mean squared (RMS)
// change in the level set function. The evolution is said to have
// converged if the RMS change is below a user specified threshold. In a
// real application is desirable to couple the evolution of the zero set
// to a visualization module allowing the user to follow the evolution of
// the zero set. With this feedback, the user may decide when to stop the
// algorithm before the zero set leaks through the regions of low gradient
// in the contour of the anatomical structure to be segmented.
geodesicActiveContour->SetMaximumRMSError(0.005);
geodesicActiveContour->SetNumberOfIterations(400);
// Software Guide : BeginLatex
//
// Each iteration, the current ``best-fit'' shape is estimated from the
// edge potential image and the current contour. To increase speed, only
// information within the sparse field layers of the current contour is
// used in the estimation. The default number of sparse field layers is the
// same as the ImageDimension which does not contain enough information to
// get a reliable best-fit shape estimate. Thus, we override the default
// and set the number of layers to 4.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
geodesicActiveContour->SetNumberOfLayers(4);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filters are then connected in a pipeline as illustrated in
// Figure~\ref{fig:GeodesicActiveContourShapePriorCollaborationDiagram}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
center->SetInput(reader->GetOutput());
smoothing->SetInput(center->GetOutput());
gradientMagnitude->SetInput(smoothing->GetOutput());
reciprocal->SetInput(gradientMagnitude->GetOutput());
geodesicActiveContour->SetInput(fastMarching->GetOutput());
geodesicActiveContour->SetFeatureImage(reciprocal->GetOutput());
thresholder->SetInput(geodesicActiveContour->GetOutput());
writer->SetInput(thresholder->GetOutput());
// Software Guide : EndCodeSnippet
// The CurvatureAnisotropicDiffusionImageFilter requires a couple of
// parameter to be defined. The following are typical values for $2D$
// images. However they may have to be adjusted depending on the amount of
// noise present in the input image. This filter has been discussed in
// section~\ref{sec:GradientAnisotropicDiffusionImageFilter}.
smoothing->SetTimeStep(0.125);
smoothing->SetNumberOfIterations(5);
smoothing->SetConductanceParameter(9.0);
// The GradientMagnitudeRecursiveGaussianImageFilter performs the
// equivalent of a convolution with a Gaussian kernel, followed by a
// derivative operator. The sigma of this Gaussian can be used to control
// the range of influence of the image edges. This filter has been
// discussed in
// Section~\ref{sec:GradientMagnitudeRecursiveGaussianImageFilter}.
const double sigma = std::stod(argv[10]);
gradientMagnitude->SetSigma(sigma);
// The FastMarchingImageFilter requires the user to provide a seed
// point from which the level set will be generated. The user can actually
// pass not only one seed point but a set of them. Note that the
// FastMarchingImageFilter is used here only as a helper in the
// determination of an initial level set. We could have used the
// \doxygen{DanielssonDistanceMapImageFilter} in the same way.
//
// The seeds are passed stored in a container. The type of this
// container is defined as \code{NodeContainer} among the
// FastMarchingImageFilter traits.
//
using NodeContainer = FastMarchingFilterType::NodeContainer;
using NodeType = FastMarchingFilterType::NodeType;
auto seeds = NodeContainer::New();
seedPosition[0] = std::stoi(argv[3]);
seedPosition[1] = std::stoi(argv[4]);
// Nodes are created as stack variables and initialized with a value and an
// \doxygen{Index} position. Note that here we assign the value of minus
// the user-provided distance to the unique node of the seeds passed to the
// FastMarchingImageFilter. In this way, the value will increment
// as the front is propagated, until it reaches the zero value
// corresponding to the contour. After this, the front will continue
// propagating until it fills up the entire image. The initial distance is
// taken here from the command line arguments. The rule of thumb for the
// user is to select this value as the distance from the seed points at
// which she want the initial contour to be.
const double initialDistance = std::stod(argv[9]);
NodeType node;
const double seedValue = -initialDistance;
node.SetValue(seedValue);
node.SetIndex(seedPosition);
// The list of nodes is initialized and then every node is inserted using
// the \code{InsertElement()}.
seeds->Initialize();
seeds->InsertElement(0, node);
seedPosition[0] = std::stoi(argv[5]);
seedPosition[1] = std::stoi(argv[6]);
node.SetIndex(seedPosition);
seeds->InsertElement(1, node);
seedPosition[0] = std::stoi(argv[7]);
seedPosition[1] = std::stoi(argv[8]);
node.SetIndex(seedPosition);
seeds->InsertElement(2, node);
// The set of seed nodes is passed now to the
// FastMarchingImageFilter with the method
// \code{SetTrialPoints()}.
//
fastMarching->SetTrialPoints(seeds);
// Since the FastMarchingImageFilter is used here just as a
// Distance Map generator. It does not require a speed image as input.
// Instead the constant value $1.0$ is passed using the
// \code{SetSpeedConstant()} method.
//
fastMarching->SetSpeedConstant(1.0);
// Here we configure all the writers required to see the intermediate
// outputs of the pipeline. This is added here only for
// pedagogical/debugging purposes. These intermediate output are normally
// not required. Only the output of the final thresholding filter should be
// relevant. Observing intermediate output is helpful in the process of
// fine tuning the parameters of filters in the pipeline.
//
auto caster1 = CastFilterType::New();
auto caster2 = CastFilterType::New();
auto caster3 = CastFilterType::New();
auto caster4 = CastFilterType::New();
auto writer1 = WriterType::New();
auto writer2 = WriterType::New();
auto writer3 = WriterType::New();
auto writer4 = WriterType::New();
caster1->SetInput(smoothing->GetOutput());
writer1->SetInput(caster1->GetOutput());
writer1->SetFileName(
"GeodesicActiveContourShapePriorImageFilterOutput1.png");
caster1->SetOutputMinimum(0);
caster1->SetOutputMaximum(255);
writer1->Update();
caster2->SetInput(gradientMagnitude->GetOutput());
writer2->SetInput(caster2->GetOutput());
writer2->SetFileName(
"GeodesicActiveContourShapePriorImageFilterOutput2.png");
caster2->SetOutputMinimum(0);
caster2->SetOutputMaximum(255);
writer2->Update();
caster3->SetInput(reciprocal->GetOutput());
writer3->SetInput(caster3->GetOutput());
writer3->SetFileName(
"GeodesicActiveContourShapePriorImageFilterOutput3.png");
caster3->SetOutputMinimum(0);
caster3->SetOutputMaximum(255);
writer3->Update();
caster4->SetInput(fastMarching->GetOutput());
writer4->SetInput(caster4->GetOutput());
writer4->SetFileName(
"GeodesicActiveContourShapePriorImageFilterOutput4.png");
caster4->SetOutputMinimum(0);
caster4->SetOutputMaximum(255);
// The FastMarchingImageFilter requires the user to specify the
// size of the image to be produced as output. This is done using the
// \code{SetOutputRegion()}. Note that the size is obtained here from the
// output image of the centering filter. The size of this image is valid
// only after the \code{Update()} methods of this filter has been called
// directly or indirectly.
//
fastMarching->SetOutputRegion(center->GetOutput()->GetBufferedRegion());
fastMarching->SetOutputSpacing(center->GetOutput()->GetSpacing());
fastMarching->SetOutputOrigin(center->GetOutput()->GetOrigin());
// Software Guide : BeginLatex
//
// Next, we define the shape model. In this example,
// we use an implicit shape model based on the principal components
// such that:
//
// \begin{equation}
// \psi^{*}(\mathbf{x}) = \mu(\mathbf{x}) + \sum_k \alpha_k u_k(\mathbf{x})
// \end{equation}
//
// where $\mu(\mathbf{x})$ is the mean signed distance computed from
// training set of segmented objects and $u_k(\mathbf{x})$ are the first
// $K$ principal components of the offset (signed distance - mean). The
// coefficients $\{\alpha_k\}$ form the set of \emph{shape} parameters.
//
// Given a set of training data, the \doxygen{ImagePCAShapeModelEstimator}
// can be used to obtain
// the mean and principal mode shape images required by
// PCAShapeSignedDistanceFunction.
//
// \index{itk::PCAShapeSignedDistanceFunction!New()}
// \index{itk::PCAShapeSignedDistanceFunction!SetNumberOfPrincipalComponents()}
//
//
// Software Guide : EndLatex
const unsigned int numberOfPCAModes = std::stoi(argv[14]);
// Software Guide : BeginCodeSnippet
using ShapeFunctionType =
auto shape = ShapeFunctionType::New();
shape->SetNumberOfPrincipalComponents(numberOfPCAModes);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In this example, we will read the mean shape and
// principal mode images from file. We will assume that
// the filenames of the mode images form a numeric series starting from
// index 0.
//
// \index{itk::PCAShapeSignedDistanceFunction!SetMeanImage()}
// \index{itk::PCAShapeSignedDistanceFunction!SetPrincipalComponentsImages()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto meanShapeReader = ReaderType::New();
meanShapeReader->SetFileName(argv[13]);
meanShapeReader->Update();
std::vector<InternalImageType::Pointer> shapeModeImages(numberOfPCAModes);
auto fileNamesCreator = itk::NumericSeriesFileNames::New();
fileNamesCreator->SetStartIndex(0);
fileNamesCreator->SetEndIndex(numberOfPCAModes - 1);
fileNamesCreator->SetSeriesFormat(argv[15]);
const std::vector<std::string> & shapeModeFileNames =
fileNamesCreator->GetFileNames();
for (unsigned int k = 0; k < numberOfPCAModes; ++k)
{
auto shapeModeReader = ReaderType::New();
shapeModeReader->SetFileName(shapeModeFileNames[k].c_str());
shapeModeReader->Update();
shapeModeImages[k] = shapeModeReader->GetOutput();
}
shape->SetMeanImage(meanShapeReader->GetOutput());
shape->SetPrincipalComponentImages(shapeModeImages);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Further we assume that the shape modes have been normalized
// by multiplying with the corresponding singular value. Hence,
// we can set the principal component standard deviations to all
// ones.
//
// \index{itk::PCAShapeSignedDistanceFunction!Set\-Principal\-Component\-Standard\-Deviations()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ShapeFunctionType::ParametersType pcaStandardDeviations(numberOfPCAModes);
pcaStandardDeviations.Fill(1.0);
shape->SetPrincipalComponentStandardDeviations(pcaStandardDeviations);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next, we instantiate a \doxygen{Euler2DTransform} and connect it to the
// PCASignedDistanceFunction. The transform represent
// the pose of the shape. The parameters of the transform
// forms the set of \emph{pose} parameters.
//
// \index{itk::PCAShapeSignedDistanceFunction!SetTransform()}
// \index{itk::ShapeSignedDistanceFunction!SetTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using TransformType = itk::Euler2DTransform<double>;
auto transform = TransformType::New();
shape->SetTransform(transform);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Before updating the level set at each iteration, the parameters
// of the current best-fit shape is estimated by minimizing the
// \doxygen{ShapePriorMAPCostFunction}. The cost function is composed of
// four terms: contour fit, image fit, shape prior and pose prior.
// The user can specify the weights applied to each term.
//
// \index{itk::ShapePriorMAPCostFunction!SetWeights()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using CostFunctionType =
auto costFunction = CostFunctionType::New();
CostFunctionType::WeightsType weights;
weights[0] = 1.0; // weight for contour fit term
weights[1] = 20.0; // weight for image fit term
weights[2] = 1.0; // weight for shape prior term
weights[3] = 1.0; // weight for pose prior term
costFunction->SetWeights(weights);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Contour fit measures the likelihood of seeing the current
// evolving contour for a given set of shape/pose parameters.
// This is computed by counting the number of pixels inside
// the current contour but outside the current shape.
//
// Image fit measures the likelihood of seeing certain image
// features for a given set of shape/pose parameters. This is
// computed by assuming that ( 1 - edge potential ) approximates
// a zero-mean, unit variance Gaussian along the normal of
// the evolving contour. Image fit is then computed by computing
// the Laplacian goodness of fit of the Gaussian:
//
// \begin{equation}
// \sum \left( G(\psi(\mathbf{x})) - |1 - g(\mathbf{x})| \right)^2
// \end{equation}
//
// where $G$ is a zero-mean, unit variance Gaussian and $g$ is
// the edge potential feature image.
//
// The pose parameters are assumed to have a uniform distribution
// and hence do not contribute to the cost function.
// The shape parameters are assumed to have a Gaussian distribution.
// The parameters of the distribution are user-specified. Since we
// assumed the principal modes have already been normalized,
// we set the distribution to zero mean and unit variance.
//
// \index{itk::ShapePriorMAPCostFunction!SetShapeParameterMeans()}
// \index{itk::ShapePriorMAPCostFunction!SetShapeParameterStandardDeviations()}
//
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
CostFunctionType::ArrayType mean(shape->GetNumberOfShapeParameters());
CostFunctionType::ArrayType stddev(shape->GetNumberOfShapeParameters());
mean.Fill(0.0);
stddev.Fill(1.0);
costFunction->SetShapeParameterMeans(mean);
costFunction->SetShapeParameterStandardDeviations(stddev);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In this example, we will use the
// \doxygen{OnePlusOneEvolutionaryOptimizer} to optimize the cost function.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using OptimizerType = itk::OnePlusOneEvolutionaryOptimizer;
auto optimizer = OptimizerType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The evolutionary optimization algorithm is based on testing
// random permutations of the parameters. As such, we need to provide
// the optimizer with a random number generator. In the following lines,
// we create a \doxygen{NormalVariateGenerator}, seed it, and
// connect it to the optimizer.
//
// \index{itk::Statistics::NormalVariateGenerator!Initialize()}
// \index{itk::OnePlusOneEvolutionaryOptimizer!SetNormalVariateGenerator()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto generator = GeneratorType::New();
generator->Initialize(20020702);
optimizer->SetNormalVariateGenerator(generator);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The cost function has $K+3$ parameters. The first $K$
// parameters are the principal component multipliers, followed
// by the 2D rotation parameter (in radians) and the x- and
// y- translation parameters (in mm). We need to carefully
// scale the different types of parameters to compensate
// for the differences in the dynamic ranges of the parameters.
//
// \index{itk::OnePlusOneEvolutionaryOptimizer!SetScales()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OptimizerType::ScalesType scales(shape->GetNumberOfParameters());
scales.Fill(1.0);
for (unsigned int k = 0; k < numberOfPCAModes; ++k)
{
scales[k] = 20.0; // scales for the pca mode multiplier
}
scales[numberOfPCAModes] = 350.0; // scale for 2D rotation
optimizer->SetScales(scales);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next, we specify the initial radius, the shrink and
// grow mutation factors and termination criteria of the optimizer.
// Since the best-fit shape is re-estimated each iteration of
// the curve evolution, we do not need to spend too much time finding the
// true minimizing solution each time; we only need to head towards it. As
// such, we only require a small number of optimizer iterations.
//
// \index{itk::OnePlusOneEvolutionaryOptimizer!Initialize()}
// \index{itk::OnePlusOneEvolutionaryOptimizer!SetEpsilon()}
// \index{itk::OnePlusOneEvolutionaryOptimizer!SetMaximumIteration()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr double initRadius = 1.05;
constexpr double grow = 1.1;
const double shrink = pow(grow, -0.25);
optimizer->Initialize(initRadius, grow, shrink);
optimizer->SetEpsilon(1.0e-6); // minimal search radius
optimizer->SetMaximumIteration(15);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Before starting the segmentation process we need to also supply the
// initial best-fit shape estimate. In this example, we start with the
// unrotated mean shape with the initial x- and y- translation specified
// through command-line arguments.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ShapeFunctionType::ParametersType parameters(
shape->GetNumberOfParameters());
parameters.Fill(0.0);
parameters[numberOfPCAModes + 1] = std::stod(argv[16]); // startX
parameters[numberOfPCAModes + 2] = std::stod(argv[17]); // startY
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, we connect all the components to the filter and add our
// observer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
geodesicActiveContour->SetShapeFunction(shape);
geodesicActiveContour->SetCostFunction(costFunction);
geodesicActiveContour->SetOptimizer(optimizer);
geodesicActiveContour->SetInitialParameters(parameters);
using CommandType = CommandIterationUpdate<GeodesicActiveContourFilterType>;
auto observer = CommandType::New();
geodesicActiveContour->AddObserver(itk::IterationEvent(), observer);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. As usual, the call is placed in a
// \code{try/catch} block to handle exceptions should errors occur.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Print out some useful information
std::cout << std::endl;
std::cout << "Max. no. iterations: "
<< geodesicActiveContour->GetNumberOfIterations() << std::endl;
std::cout << "Max. RMS error: "
<< geodesicActiveContour->GetMaximumRMSError() << std::endl;
std::cout << std::endl;
std::cout << "No. elpased iterations: "
<< geodesicActiveContour->GetElapsedIterations() << std::endl;
std::cout << "RMS change: " << geodesicActiveContour->GetRMSChange()
<< std::endl;
std::cout << "Parameters: " << geodesicActiveContour->GetCurrentParameters()
<< std::endl;
writer4->Update();
// The following writer type is used to save the output of the time-crossing
// map in a file with appropriate pixel representation. The advantage of
// saving this image in native format is that it can be used with a viewer
// to help determine an appropriate threshold to be used on the output of
// the fastmarching filter.
//
using InternalWriterType = itk::ImageFileWriter<InternalImageType>;
auto mapWriter = InternalWriterType::New();
mapWriter->SetInput(fastMarching->GetOutput());
mapWriter->SetFileName(
"GeodesicActiveContourShapePriorImageFilterOutput4.mha");
mapWriter->Update();
auto speedWriter = InternalWriterType::New();
speedWriter->SetInput(reciprocal->GetOutput());
speedWriter->SetFileName(
"GeodesicActiveContourShapePriorImageFilterOutput3.mha");
speedWriter->Update();
auto gradientWriter = InternalWriterType::New();
gradientWriter->SetInput(gradientMagnitude->GetOutput());
gradientWriter->SetFileName(
"GeodesicActiveContourShapePriorImageFilterOutput2.mha");
gradientWriter->Update();
// Also write out the initial and final best fit shape
using EvaluatorFilterType =
InternalImageType,
InternalImageType>;
auto evaluator = EvaluatorFilterType::New();
evaluator->SetInput(geodesicActiveContour->GetOutput());
evaluator->SetFunction(shape);
shape->SetParameters(geodesicActiveContour->GetInitialParameters());
thresholder->SetInput(evaluator->GetOutput());
writer->SetFileName(
"GeodesicActiveContourShapePriorImageFilterOutput5.png");
writer->Update();
shape->SetParameters(geodesicActiveContour->GetCurrentParameters());
evaluator->Modified();
writer->SetFileName(
"GeodesicActiveContourShapePriorImageFilterOutput6.png");
writer->Update();
// Software Guide : BeginLatex
//
// Deviating from previous examples, we will demonstrate this example using
// \code{BrainMidSagittalSlice.png}
// (Figure~\ref{fig:GeodesicActiveContourShapePriorImageFilterOutput},
// left) from the \code{Examples/Data} directory. The aim here is to
// segment the corpus callosum from the image using a shape model defined
// by \code{CorpusCallosumMeanShape.mha} and the first three principal
// components \code{CorpusCallosumMode0.mha},
// \code{CorpusCallosumMode1.mha} and \code{CorpusCallosumMode12.mha}. As
// shown in Figure~\ref{fig:CorpusCallosumPCAModes}, the first mode
// captures scaling, the second mode captures the shifting of mass between
// the rostrum and the splenium and the third mode captures the degree of
// curvature. Segmentation results with and without shape guidance are
// shown in
// Figure~\ref{fig:GeodesicActiveContourShapePriorImageFilterOutput2}.
//
//
// \begin{figure} \center
// \includegraphics[width=0.30\textwidth]{BrainMidSagittalSlice}
// \includegraphics[width=0.30\textwidth]{GeodesicActiveContourShapePriorImageFilterOutput5}
// \itkcaption[GeodesicActiveContourShapePriorImageFilter input image and
// initial model]{ The input image to the
// GeodesicActiveContourShapePriorLevelSetImageFilter is a synthesized
// MR-T1 mid-sagittal slice ($217 \times 180$ pixels, $1 \times 1$ mm
// spacing) of the brain (left) and the initial best-fit shape (right)
// chosen to roughly overlap the corpus callosum in the image to be
// segmented.}
//
// \label{fig:GeodesicActiveContourShapePriorImageFilterOutput}
// \end{figure}
//
//
// \begin{figure}
// \center
// \begin{tabular}{cccc}
// & $-3\sigma$ & mean & $+3\sigma$ \\ mode 0: &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumModeMinus0} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumMeanShape} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumModePlus0} \\ mode
// 1: & \includegraphics[width=0.10\textwidth]{CorpusCallosumModeMinus1} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumMeanShape} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumModePlus1} \\ mode
// 2: & \includegraphics[width=0.10\textwidth]{CorpusCallosumModeMinus2} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumMeanShape} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumModePlus2}
// \\ \end{tabular}
// \itkcaption[Corpus callosum PCA modes]{First three PCA
// modes of a low-resolution
// ($58 \times 31$ pixels, $2 \times 2$ mm spacing) corpus callosum model
// used in the shape guided geodesic active contours example.}
//
// \label{fig:CorpusCallosumPCAModes}
// \end{figure}
//
// A sigma value of $1.0$ was used to compute the image gradient and the
// propagation and shape prior scaling are respectively set to $0.5$ and
// $0.02$. An initial level set was created by placing one seed point in
// the rostrum $(60,102)$, one in the splenium $(120, 85)$ and one
// centrally in the body $(88,83)$ of the corpus callosum with
// an initial radius of $6$ pixels at each seed position.
// The best-fit shape was initially placed with a translation of
// $(10,0)$mm so that it roughly overlapped
// the corpus callosum in the image as shown in
// Figure~\ref{fig:GeodesicActiveContourShapePriorImageFilterOutput}
// (right).
//
// From Figure~\ref{fig:GeodesicActiveContourShapePriorImageFilterOutput2}
// it can be observed that without shape guidance (left), segmentation
// using geodesic active contour leaks in the regions where the corpus
// callosum blends into the surrounding brain tissues. With shape guidance
// (center), the segmentation is constrained by the global shape model to
// prevent leaking.
//
// The final best-fit shape parameters after the segmentation process is:
//
// \begin{verbatim}
// Parameters: [-0.384988, -0.578738, 0.557793, 0.275202, 16.9992, 4.73473]
// \end{verbatim}
//
// and is shown in
// Figure~\ref{fig:GeodesicActiveContourShapePriorImageFilterOutput2}
// (right). Note that a $0.28$ radian ($15.8$ degree) rotation has been
// introduced to match the model to the corpus callosum in the image.
// Additionally, a negative weight for the first mode shrinks the size
// relative to the mean shape. A negative weight for the second mode shifts
// the mass to splenium, and a positive weight for the third mode increases
// the curvature. It can also be observed that the final segmentation is a
// combination of the best-fit shape with additional local deformation. The
// combination of both global and local shape allows the segmentation to
// capture fine details not represented in the shape model.
//
//
// \begin{figure} \center
// \includegraphics[width=0.30\textwidth]{GeodesicActiveContourShapePriorImageFilterOutput1}
// \includegraphics[width=0.30\textwidth]{GeodesicActiveContourShapePriorImageFilterOutput2}
// \includegraphics[width=0.30\textwidth]{GeodesicActiveContourShapePriorImageFilterOutput6}
// \itkcaption[GeodesicActiveContourShapePriorImageFilter
// segmentations]{Corpus callosum segmentation using geodesic active
// contours without (left) and with (center) shape guidance. The image on
// the right represents the best-fit shape at the end of the segmentation
// process.}
//
// \label{fig:GeodesicActiveContourShapePriorImageFilterOutput2}
// \end{figure}
//
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
Pixel-wise addition of two images.
Binarize an input image by thresholding.
Computes 1/(1+x) for each pixel in the image.
Change the origin, spacing and/or region of an Image.
Superclass for callback/observer methods.
Definition: itkCommand.h:46
virtual void Execute(Object *caller, const EventObject &event)=0
This filter performs anisotropic diffusion on a scalar itk::Image using the modified curvature diffus...
Euler2DTransform of a vector space (e.g. space coordinates)
Abstraction of the Events used to communicating among filters and with GUIs.
Standard exception handling object.
Solve an Eikonal equation using Fast Marching.
Segments structures in an image based on a user supplied edge potential map and user supplied shape m...
Computes the Magnitude of the Gradient of an image by convolution with the first derivative of a Gaus...
Data source that reads image data from a single file.
Writes image data to a single file.
Templated n-dimensional image class.
Definition: itkImage.h:89
Base class for most ITK classes.
Definition: itkObject.h:62
Compute the signed distance from a N-dimensional PCA Shape.
Applies a linear transformation to the intensity levels of the input Image.
Represents the maximum aprior (MAP) cost function used ShapePriorSegmentationLevelSetImageFilter to e...
Evaluates a SpatialFunction onto a source image.
static Pointer New()
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
SmartPointer< Self > Pointer
class ITK_FORWARD_EXPORT Command
Definition: itkObject.h:42